Spaces:
Sleeping
Sleeping
dictionary = dict( | |
type='Dictionary', | |
dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt', | |
with_padding=True, | |
with_unknown=True, | |
same_start_end=True, | |
with_start=True, | |
with_end=True) | |
model = dict( | |
type='ASTER', | |
preprocessor=dict( | |
type='STN', | |
in_channels=3, | |
resized_image_size=(32, 64), | |
output_image_size=(32, 100), | |
num_control_points=20), | |
backbone=dict( | |
type='ResNet', | |
in_channels=3, | |
stem_channels=[32], | |
block_cfgs=dict(type='BasicBlock', use_conv1x1='True'), | |
arch_layers=[3, 4, 6, 6, 3], | |
arch_channels=[32, 64, 128, 256, 512], | |
strides=[(2, 2), (2, 2), (2, 1), (2, 1), (2, 1)], | |
init_cfg=[ | |
dict(type='Kaiming', layer='Conv2d'), | |
dict(type='Constant', val=1, layer='BatchNorm2d'), | |
]), | |
encoder=dict(type='ASTEREncoder', in_channels=512), | |
decoder=dict( | |
type='ASTERDecoder', | |
max_seq_len=25, | |
in_channels=512, | |
emb_dims=512, | |
attn_dims=512, | |
hidden_size=512, | |
postprocessor=dict(type='AttentionPostprocessor'), | |
module_loss=dict( | |
type='CEModuleLoss', flatten=True, ignore_first_char=True), | |
dictionary=dictionary, | |
), | |
data_preprocessor=dict( | |
type='TextRecogDataPreprocessor', | |
mean=[127.5, 127.5, 127.5], | |
std=[127.5, 127.5, 127.5])) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', ignore_empty=True, min_size=0), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict(type='Resize', scale=(256, 64)), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(256, 64)), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio', | |
'instances')) | |
] | |
tta_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='TestTimeAug', | |
transforms=[[ | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=0, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]"), | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=1, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]"), | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=3, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]"), | |
], [dict(type='Resize', scale=(256, 64))], | |
[dict(type='LoadOCRAnnotations', with_text=True)], | |
[ | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'valid_ratio', 'instances')) | |
]]) | |
] | |