Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import os.path as osp | |
import mmcv | |
import mmengine | |
from mmocr.utils import crop_img, dump_ocr_data | |
def collect_files(img_dir, gt_dir): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir (str): The image directory | |
gt_dir (str): The groundtruth directory | |
Returns: | |
files (list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
ann_list, imgs_list = [], [] | |
for img_file in os.listdir(img_dir): | |
ann_file = img_file.split('_')[0] + '_gt_ocr.txt' | |
ann_list.append(osp.join(gt_dir, ann_file)) | |
imgs_list.append(osp.join(img_dir, img_file)) | |
files = list(zip(imgs_list, ann_list)) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files (list): The list of tuples (image_file, groundtruth_file) | |
nproc (int): The number of process to collect annotations | |
Returns: | |
images (list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmengine.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmengine.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files (tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
assert osp.basename(gt_file).split('_')[0] == osp.basename(gt_file).split( | |
'_')[0] | |
# read imgs while ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
img_info = dict( | |
file_name=osp.basename(img_file), | |
height=img.shape[0], | |
width=img.shape[1], | |
segm_file=osp.basename(gt_file)) | |
if osp.splitext(gt_file)[1] == '.txt': | |
img_info = load_txt_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def load_txt_info(gt_file, img_info): | |
"""Collect the annotation information. | |
The annotation format is as the following: | |
x, y, w, h, text | |
977, 152, 16, 49, NOME | |
962, 143, 12, 323, APPINHANESI BLAZEK PASSOTTO | |
906, 446, 12, 94, 206940361 | |
905, 641, 12, 44, SPTC | |
Args: | |
gt_file (str): The path to ground-truth | |
img_info (dict): The dict of the img and annotation information | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
with open(gt_file, encoding='latin1') as f: | |
anno_info = [] | |
for line in f: | |
line = line.strip('\n') | |
# Ignore hard samples | |
if line[0] == '[' or line[0] == 'x': | |
continue | |
ann = line.split(',') | |
bbox = ann[0:4] | |
bbox = [int(coord) for coord in bbox] | |
x, y, w, h = bbox | |
# in case ',' exists in label | |
word = ','.join(ann[4:]) if len(ann[4:]) > 1 else ann[4] | |
# remove the initial space | |
word = word.strip() | |
bbox = [x, y, x + w, y, x + w, y + h, x, y + h] | |
anno = dict(bbox=bbox, word=word) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def split_train_val_list(full_list, val_ratio): | |
"""Split list by val_ratio. | |
Args: | |
full_list (list): List to be splited | |
val_ratio (float): Split ratio for val set | |
return: | |
list(list, list): Train_list and val_list | |
""" | |
n_total = len(full_list) | |
offset = int(n_total * val_ratio) | |
if n_total == 0 or offset < 1: | |
return [], full_list | |
val_list = full_list[:offset] | |
train_list = full_list[offset:] | |
return [train_list, val_list] | |
def generate_ann(root_path, image_infos, preserve_vertical, val_ratio, format): | |
"""Generate cropped annotations and label txt file. | |
Args: | |
root_path (str): The root path of the dataset | |
image_infos (list[dict]): A list of dicts of the img and | |
annotation information | |
preserve_vertical (bool): Whether to preserve vertical texts | |
val_ratio (float): Split ratio for val set | |
format (str): Using jsonl(dict) or str to format annotations | |
""" | |
assert val_ratio <= 1. | |
if val_ratio: | |
image_infos = split_train_val_list(image_infos, val_ratio) | |
splits = ['training', 'val'] | |
else: | |
image_infos = [image_infos] | |
splits = ['training'] | |
for i, split in enumerate(splits): | |
dst_image_root = osp.join(root_path, 'crops', split) | |
ignore_image_root = osp.join(root_path, 'ignores', split) | |
os.makedirs(dst_image_root, exist_ok=True) | |
img_info = [] | |
for image_info in image_infos[i]: | |
index = 1 | |
src_img_path = osp.join(root_path, 'imgs', image_info['file_name']) | |
image = mmcv.imread(src_img_path) | |
src_img_root = image_info['file_name'].split('.')[0] | |
for anno in image_info['anno_info']: | |
word = anno['word'] | |
dst_img = crop_img(image, anno['bbox'], 0, 0) | |
h, w, _ = dst_img.shape | |
dst_img_name = f'{src_img_root}_{index}.png' | |
index += 1 | |
# Skip invalid annotations | |
if min(dst_img.shape) == 0: | |
continue | |
# Skip vertical texts | |
if not preserve_vertical and h / w > 2 and split == 'training': | |
dst_img_path = osp.join(ignore_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
continue | |
dst_img_path = osp.join(dst_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
img_info.append({ | |
'file_name': dst_img_name, | |
'anno_info': [{ | |
'text': word | |
}] | |
}) | |
dump_ocr_data(img_info, | |
osp.join(root_path, f'{split.lower()}_label.json'), | |
'textrecog') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and val set of BID ') | |
parser.add_argument('root_path', help='Root dir path of BID') | |
parser.add_argument( | |
'--preserve-vertical', | |
help='Preserve samples containing vertical texts', | |
action='store_true') | |
parser.add_argument( | |
'--val-ratio', help='Split ratio for val set', default=0., type=float) | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='Number of processes') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
with mmengine.Timer(print_tmpl='It takes {}s to convert BID annotation'): | |
files = collect_files( | |
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations')) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
generate_ann(root_path, image_infos, args.preserve_vertical, | |
args.val_ratio, args.format) | |
if __name__ == '__main__': | |
main() | |