Mountchicken's picture
Upload 704 files
9bf4bd7
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmocr.models.common.dictionary import Dictionary
from mmocr.models.common.modules import PositionalEncoding
from mmocr.registry import MODELS
from mmocr.structures import TextRecogDataSample
from .base import BaseDecoder
@MODELS.register_module()
class ABIVisionDecoder(BaseDecoder):
"""Converts visual features into text characters.
Implementation of VisionEncoder in
`ABINet <https://arxiv.org/abs/2103.06495>`_.
Args:
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
the instance of `Dictionary`.
in_channels (int): Number of channels :math:`E` of input vector.
Defaults to 512.
num_channels (int): Number of channels of hidden vectors in mini U-Net.
Defaults to 64.
attn_height (int): Height :math:`H` of input image features. Defaults
to 8.
attn_width (int): Width :math:`W` of input image features. Defaults to
32.
attn_mode (str): Upsampling mode for :obj:`torch.nn.Upsample` in mini
U-Net. Defaults to 'nearest'.
module_loss (dict, optional): Config to build loss. Defaults to None.
postprocessor (dict, optional): Config to build postprocessor.
Defaults to None.
max_seq_len (int): Maximum sequence length. The
sequence is usually generated from decoder. Defaults to 40.
init_cfg (dict or list[dict], optional): Initialization configs.
Defaults to dict(type='Xavier', layer='Conv2d').
"""
def __init__(self,
dictionary: Union[Dict, Dictionary],
in_channels: int = 512,
num_channels: int = 64,
attn_height: int = 8,
attn_width: int = 32,
attn_mode: str = 'nearest',
module_loss: Optional[Dict] = None,
postprocessor: Optional[Dict] = None,
max_seq_len: int = 40,
init_cfg: Optional[Union[Dict, List[Dict]]] = dict(
type='Xavier', layer='Conv2d'),
**kwargs) -> None:
super().__init__(
dictionary=dictionary,
module_loss=module_loss,
postprocessor=postprocessor,
max_seq_len=max_seq_len,
init_cfg=init_cfg)
# For mini-Unet
self.k_encoder = nn.Sequential(
self._encoder_layer(in_channels, num_channels, stride=(1, 2)),
self._encoder_layer(num_channels, num_channels, stride=(2, 2)),
self._encoder_layer(num_channels, num_channels, stride=(2, 2)),
self._encoder_layer(num_channels, num_channels, stride=(2, 2)))
self.k_decoder = nn.Sequential(
self._decoder_layer(
num_channels, num_channels, scale_factor=2, mode=attn_mode),
self._decoder_layer(
num_channels, num_channels, scale_factor=2, mode=attn_mode),
self._decoder_layer(
num_channels, num_channels, scale_factor=2, mode=attn_mode),
self._decoder_layer(
num_channels,
in_channels,
size=(attn_height, attn_width),
mode=attn_mode))
self.pos_encoder = PositionalEncoding(in_channels, max_seq_len)
self.project = nn.Linear(in_channels, in_channels)
self.cls = nn.Linear(in_channels, self.dictionary.num_classes)
def forward_train(
self,
feat: Optional[torch.Tensor] = None,
out_enc: torch.Tensor = None,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> Dict:
"""
Args:
feat (Tensor, optional): Image features of shape (N, E, H, W).
Defaults to None.
out_enc (torch.Tensor): Encoder output. Defaults to None.
data_samples (list[TextRecogDataSample], optional): Batch of
TextRecogDataSample, containing gt_text information. Defaults
to None.
Returns:
dict: A dict with keys ``feature``, ``logits`` and ``attn_scores``.
- feature (Tensor): Shape (N, T, E). Raw visual features for
language decoder.
- logits (Tensor): Shape (N, T, C). The raw logits for
characters.
- attn_scores (Tensor): Shape (N, T, H, W). Intermediate result
for vision-language aligner.
"""
# Position Attention
N, E, H, W = out_enc.size()
k, v = out_enc, out_enc # (N, E, H, W)
# Apply mini U-Net on k
features = []
for i in range(len(self.k_encoder)):
k = self.k_encoder[i](k)
features.append(k)
for i in range(len(self.k_decoder) - 1):
k = self.k_decoder[i](k)
k = k + features[len(self.k_decoder) - 2 - i]
k = self.k_decoder[-1](k)
# q = positional encoding
zeros = out_enc.new_zeros((N, self.max_seq_len, E)) # (N, T, E)
q = self.pos_encoder(zeros) # (N, T, E)
q = self.project(q) # (N, T, E)
# Attention encoding
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
attn_scores = attn_scores / (E**0.5)
attn_scores = torch.softmax(attn_scores, dim=-1)
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
out_enc = self.cls(attn_vecs)
result = {
'feature': attn_vecs,
'logits': out_enc,
'attn_scores': attn_scores.view(N, -1, H, W)
}
return result
def forward_test(
self,
feat: Optional[torch.Tensor] = None,
out_enc: torch.Tensor = None,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> Dict:
"""
Args:
feat (torch.Tensor, optional): Image features of shape
(N, E, H, W). Defaults to None.
out_enc (torch.Tensor): Encoder output. Defaults to None.
data_samples (list[TextRecogDataSample], optional): Batch of
TextRecogDataSample, containing gt_text information. Defaults
to None.
Returns:
dict: A dict with keys ``feature``, ``logits`` and ``attn_scores``.
- feature (Tensor): Shape (N, T, E). Raw visual features for
language decoder.
- logits (Tensor): Shape (N, T, C). The raw logits for
characters.
- attn_scores (Tensor): Shape (N, T, H, W). Intermediate result
for vision-language aligner.
"""
return self.forward_train(
feat, out_enc=out_enc, data_samples=data_samples)
def _encoder_layer(self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 2,
padding: int = 1) -> nn.Sequential:
"""Generate encoder layer.
Args:
in_channels (int): Input channels.
out_channels (int): Output channels.
kernel_size (int, optional): Kernel size. Defaults to 3.
stride (int, optional): Stride. Defaults to 2.
padding (int, optional): Padding. Defaults to 1.
Returns:
nn.Sequential: Encoder layer.
"""
return ConvModule(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'))
def _decoder_layer(self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
padding: int = 1,
mode: str = 'nearest',
scale_factor: Optional[int] = None,
size: Optional[Tuple[int, int]] = None):
"""Generate decoder layer.
Args:
in_channels (int): Input channels.
out_channels (int): Output channels.
kernel_size (int): Kernel size. Defaults to 3.
stride (int): Stride. Defaults to 1.
padding (int): Padding. Defaults to 1.
mode (str): Interpolation mode. Defaults to 'nearest'.
scale_factor (int, optional): Scale factor for upsampling.
size (Tuple[int, int], optional): Output size. Defaults to None.
"""
align_corners = None if mode == 'nearest' else True
return nn.Sequential(
nn.Upsample(
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners),
ConvModule(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU')))