MAERec-Gradio / mmocr /models /textrecog /decoders /robust_scanner_fuser.py
Mountchicken's picture
Upload 704 files
9bf4bd7
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, List, Optional, Sequence, Union
import torch
import torch.nn as nn
from mmocr.models.common.dictionary import Dictionary
from mmocr.registry import MODELS
from mmocr.structures import TextRecogDataSample
from .base import BaseDecoder
@MODELS.register_module()
class RobustScannerFuser(BaseDecoder):
"""Decoder for RobustScanner.
Args:
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
the instance of `Dictionary`.
module_loss (dict, optional): Config to build module_loss. Defaults
to None.
postprocessor (dict, optional): Config to build postprocessor.
Defaults to None.
hybrid_decoder (dict): Config to build hybrid_decoder. Defaults to
dict(type='SequenceAttentionDecoder').
position_decoder (dict): Config to build position_decoder. Defaults to
dict(type='PositionAttentionDecoder').
fuser (dict): Config to build fuser. Defaults to
dict(type='RobustScannerFuser').
max_seq_len (int): Maximum sequence length. The
sequence is usually generated from decoder. Defaults to 30.
in_channels (list[int]): List of input channels.
Defaults to [512, 512].
dim (int): The dimension on which to split the input. Defaults to -1.
init_cfg (dict or list[dict], optional): Initialization configs.
Defaults to None.
"""
def __init__(self,
dictionary: Union[Dict, Dictionary],
module_loss: Optional[Dict] = None,
postprocessor: Optional[Dict] = None,
hybrid_decoder: Dict = dict(type='SequenceAttentionDecoder'),
position_decoder: Dict = dict(
type='PositionAttentionDecoder'),
max_seq_len: int = 30,
in_channels: List[int] = [512, 512],
dim: int = -1,
init_cfg: Optional[Union[Dict, List[Dict]]] = None) -> None:
super().__init__(
dictionary=dictionary,
module_loss=module_loss,
postprocessor=postprocessor,
max_seq_len=max_seq_len,
init_cfg=init_cfg)
for cfg_name in ['hybrid_decoder', 'position_decoder']:
cfg = eval(cfg_name)
if cfg is not None:
if cfg.get('dictionary', None) is None:
cfg.update(dictionary=self.dictionary)
else:
warnings.warn(f"Using dictionary {cfg['dictionary']} "
"in decoder's config.")
if cfg.get('max_seq_len', None) is None:
cfg.update(max_seq_len=max_seq_len)
else:
warnings.warn(f"Using max_seq_len {cfg['max_seq_len']} "
"in decoder's config.")
setattr(self, cfg_name, MODELS.build(cfg))
in_channels = sum(in_channels)
self.dim = dim
self.linear_layer = nn.Linear(in_channels, in_channels)
self.glu_layer = nn.GLU(dim=dim)
self.prediction = nn.Linear(
int(in_channels / 2), self.dictionary.num_classes)
self.softmax = nn.Softmax(dim=-1)
def forward_train(
self,
feat: Optional[torch.Tensor] = None,
out_enc: Optional[torch.Tensor] = None,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> torch.Tensor:
"""Forward for training.
Args:
feat (torch.Tensor, optional): The feature map from backbone of
shape :math:`(N, E, H, W)`. Defaults to None.
out_enc (torch.Tensor, optional): Encoder output. Defaults to None.
data_samples (Sequence[TextRecogDataSample]): Batch of
TextRecogDataSample, containing gt_text information. Defaults
to None.
"""
hybrid_glimpse = self.hybrid_decoder(feat, out_enc, data_samples)
position_glimpse = self.position_decoder(feat, out_enc, data_samples)
fusion_input = torch.cat([hybrid_glimpse, position_glimpse], self.dim)
outputs = self.linear_layer(fusion_input)
outputs = self.glu_layer(outputs)
return self.prediction(outputs)
def forward_test(
self,
feat: Optional[torch.Tensor] = None,
out_enc: Optional[torch.Tensor] = None,
data_samples: Optional[Sequence[TextRecogDataSample]] = None
) -> torch.Tensor:
"""Forward for testing.
Args:
feat (torch.Tensor, optional): The feature map from backbone of
shape :math:`(N, E, H, W)`. Defaults to None.
out_enc (torch.Tensor, optional): Encoder output. Defaults to None.
data_samples (Sequence[TextRecogDataSample]): Batch of
TextRecogDataSample, containing vaild_ratio information.
Defaults to None.
Returns:
Tensor: Character probabilities. of shape
:math:`(N, self.max_seq_len, C)` where :math:`C` is
``num_classes``.
"""
position_glimpse = self.position_decoder(feat, out_enc, data_samples)
batch_size = feat.size(0)
decode_sequence = (feat.new_ones((batch_size, self.max_seq_len)) *
self.dictionary.start_idx).long()
outputs = []
for step in range(self.max_seq_len):
hybrid_glimpse_step = self.hybrid_decoder.forward_test_step(
feat, out_enc, decode_sequence, step, data_samples)
fusion_input = torch.cat(
[hybrid_glimpse_step, position_glimpse[:, step, :]], self.dim)
output = self.linear_layer(fusion_input)
output = self.glu_layer(output)
output = self.prediction(output)
_, max_idx = torch.max(output, dim=1, keepdim=False)
if step < self.max_seq_len - 1:
decode_sequence[:, step + 1] = max_idx
outputs.append(output)
outputs = torch.stack(outputs, 1)
return self.softmax(outputs)