model = dict( type='DBNet', backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, style='pytorch', dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), stage_with_dcn=(False, True, True, True)), neck=dict( type='FPNC', in_channels=[256, 512, 1024, 2048], lateral_channels=256, asf_cfg=dict(attention_type='ScaleChannelSpatial')), det_head=dict( type='DBHead', in_channels=256, module_loss=dict(type='DBModuleLoss'), postprocessor=dict( type='DBPostprocessor', text_repr_type='quad', epsilon_ratio=0.002)), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_bbox=True, with_polygon=True, with_label=True, ), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(4068, 1024), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True, ), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ]