_base_ = [ '../_base_/datasets/ctw1500.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adam_600e.py', '_base_panet_resnet18_fpem-ffm.py', ] model = dict(det_head=dict(module_loss=dict(shrink_ratio=(1, 0.7)))) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), ) train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True, ), dict(type='ShortScaleAspectJitter', short_size=640, scale_divisor=32), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='RandomRotate', max_angle=10), dict(type='TextDetRandomCrop', target_size=(640, 640)), dict(type='Pad', size=(640, 640)), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), # TODO Replace with mmcv.RescaleToShort when it's ready dict( type='ShortScaleAspectJitter', short_size=640, scale_divisor=1, ratio_range=(1.0, 1.0), aspect_ratio_range=(1.0, 1.0)), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # dataset settings ctw1500_textdet_train = _base_.ctw1500_textdet_train ctw1500_textdet_test = _base_.ctw1500_textdet_test # pipeline settings ctw1500_textdet_train.pipeline = train_pipeline ctw1500_textdet_test.pipeline = test_pipeline train_dataloader = dict( batch_size=16, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=ctw1500_textdet_train) val_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=ctw1500_textdet_test) test_dataloader = val_dataloader val_evaluator = dict( type='HmeanIOUMetric', pred_score_thrs=dict(start=0.3, stop=1, step=0.05)) test_evaluator = val_evaluator auto_scale_lr = dict(base_batch_size=16)