model = dict( type='TextSnake', backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), norm_eval=True, style='caffe'), neck=dict( type='FPN_UNet', in_channels=[256, 512, 1024, 2048], out_channels=32), det_head=dict( type='TextSnakeHead', in_channels=32, module_loss=dict(type='TextSnakeModuleLoss'), postprocessor=dict( type='TextSnakePostprocessor', text_repr_type='poly')), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_bbox=True, with_polygon=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='RandomApply', transforms=[dict(type='RandomCrop', min_side_ratio=0.3)], prob=0.65), dict( type='RandomRotate', max_angle=20, pad_with_fixed_color=False, use_canvas=True), dict( type='BoundedScaleAspectJitter', long_size_bound=800, short_size_bound=480, ratio_range=(0.7, 1.3), aspect_ratio_range=(0.9, 1.1)), dict( type='RandomChoice', transforms=[[ dict(type='Resize', scale=800, keep_ratio=True), dict(type='SourceImagePad', target_scale=800) ], dict(type='Resize', scale=800, keep_ratio=False)], prob=[0.4, 0.6]), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ]