# Note: This schedule config serves as a base config for other schedules. # Users would have to at least fill in "max_epochs" and "val_interval" # in order to use this config in their experiments. # optimizer optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4)) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=None, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning policy param_scheduler = [ dict(type='ConstantLR', factor=1.0), ]