_base_ = [ '../_base_/datasets/union14m_train.py', '../_base_/datasets/union14m_benchmark.py', '../_base_/datasets/cute80.py', '../_base_/datasets/iiit5k.py', '../_base_/datasets/svt.py', '../_base_/datasets/svtp.py', '../_base_/datasets/icdar2013.py', '../_base_/datasets/icdar2015.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adamw_cos_10e.py', '_base_abinet.py', ] load_from = 'https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth' # noqa _base_.pop('model') dictionary = dict( type='Dictionary', dict_file= # noqa '{{ fileDirname }}/../../../dicts/english_digits_symbols_space.txt', with_padding=True, with_unknown=True, same_start_end=True, with_start=True, with_end=True) model = dict( type='ABINet', backbone=dict(type='ResNetABI'), encoder=dict( type='ABIEncoder', n_layers=3, n_head=8, d_model=512, d_inner=2048, dropout=0.1, max_len=8 * 32, ), decoder=dict( type='ABIFuser', vision_decoder=dict( type='ABIVisionDecoder', in_channels=512, num_channels=64, attn_height=8, attn_width=32, attn_mode='nearest', init_cfg=dict(type='Xavier', layer='Conv2d')), module_loss=dict(type='ABIModuleLoss'), postprocessor=dict(type='AttentionPostprocessor'), dictionary=dictionary, max_seq_len=26, ), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])) # dataset settings train_list = [ _base_.union14m_challenging, _base_.union14m_hard, _base_.union14m_medium, _base_.union14m_normal, _base_.union14m_easy ] val_list = [ _base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test, _base_.svt_textrecog_test, _base_.svtp_textrecog_test, _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test ] test_list = [ _base_.union14m_benchmark_artistic, _base_.union14m_benchmark_multi_oriented, _base_.union14m_benchmark_contextless, _base_.union14m_benchmark_curve, _base_.union14m_benchmark_incomplete, _base_.union14m_benchmark_incomplete_ori, _base_.union14m_benchmark_multi_words, _base_.union14m_benchmark_salient, _base_.union14m_benchmark_general, ] train_dataset = dict( type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) test_dataset = dict( type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) val_dataset = dict( type='ConcatDataset', datasets=val_list, pipeline=_base_.test_pipeline) train_dataloader = dict( batch_size=128, num_workers=24, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=train_dataset) test_dataloader = dict( batch_size=128, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=test_dataset) val_dataloader = dict( batch_size=128, num_workers=4, persistent_workers=True, pin_memory=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=val_dataset) val_evaluator = dict( dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) test_evaluator = dict(dataset_prefixes=[ 'artistic', 'multi-oriented', 'contextless', 'curve', 'incomplete', 'incomplete-ori', 'multi-words', 'salient', 'general' ])