_base_ = [ '../_base_/datasets/mjsynth.py', '../_base_/datasets/synthtext.py', '../_base_/datasets/cute80.py', '../_base_/datasets/iiit5k.py', '../_base_/datasets/svt.py', '../_base_/datasets/svtp.py', '../_base_/datasets/icdar2013.py', '../_base_/datasets/icdar2015.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adam_base.py', '_base_abinet.py', ] load_from = 'https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth' # noqa optim_wrapper = dict(optimizer=dict(lr=1e-4)) train_cfg = dict(max_epochs=20) # learning policy param_scheduler = [ dict( type='LinearLR', end=2, start_factor=0.001, convert_to_iter_based=True), dict(type='MultiStepLR', milestones=[16, 18], end=20), ] # dataset settings train_list = [ _base_.mjsynth_textrecog_train, _base_.synthtext_an_textrecog_train ] test_list = [ _base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test, _base_.svt_textrecog_test, _base_.svtp_textrecog_test, _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test ] train_dataset = dict( type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) test_dataset = dict( type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) train_dataloader = dict( batch_size=192, num_workers=32, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=train_dataset) test_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=test_dataset) val_dataloader = test_dataloader val_evaluator = dict( dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) test_evaluator = val_evaluator auto_scale_lr = dict(base_batch_size=192 * 8)