# Copyright (c) OpenMMLab. All rights reserved. import argparse import math import os import os.path as osp import mmcv import mmengine from mmocr.utils import dump_ocr_data def collect_files(img_dir, gt_dir, ratio): """Collect all images and their corresponding groundtruth files. Args: img_dir (str): The image directory gt_dir (str): The groundtruth directory ratio (float): Split ratio for val set Returns: files (list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir assert isinstance(ratio, float) assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0' ann_list, imgs_list = [], [] for ann_file in os.listdir(gt_dir): ann_list.append(osp.join(gt_dir, ann_file)) imgs_list.append(osp.join(img_dir, ann_file.replace('txt', 'jpg'))) all_files = list(zip(imgs_list, ann_list)) assert len(all_files), f'No images found in {img_dir}' print(f'Loaded {len(all_files)} images from {img_dir}') trn_files, val_files = [], [] if ratio > 0: for i, file in enumerate(all_files): if i % math.floor(1 / ratio): trn_files.append(file) else: val_files.append(file) else: trn_files, val_files = all_files, [] print(f'training #{len(trn_files)}, val #{len(val_files)}') return trn_files, val_files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files (list): The list of tuples (image_file, groundtruth_file) nproc (int): The number of process to collect annotations Returns: images (list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmengine.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmengine.track_progress(load_img_info, files) return images def load_img_info(files): """Load the information of one image. Args: files (tuple): The tuple of (img_file, groundtruth_file) Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( '.')[0] # read imgs while ignoring orientations img = mmcv.imread(img_file) img_info = dict( file_name=osp.join(osp.basename(img_file)), height=img.shape[0], width=img.shape[1], segm_file=osp.join(osp.basename(gt_file))) if osp.splitext(gt_file)[1] == '.txt': img_info = load_txt_info(gt_file, img_info) else: raise NotImplementedError return img_info def load_txt_info(gt_file, img_info): """Collect the annotation information. The annotation format is as the following: x1, y1, x2, y2, x3, y3, x4, y4, difficult, text 390,902,1856,902,1856,1225,390,1225,0,"金氏眼镜" 1875,1170,2149,1170,2149,1245,1875,1245,0,"创于1989" 2054,1277,2190,1277,2190,1323,2054,1323,0,"城建店" Args: gt_file (str): The path to ground-truth img_info (dict): The dict of the img and annotation information Returns: img_info (dict): The dict of the img and annotation information """ anno_info = [] with open(gt_file, encoding='utf-8-sig') as f: lines = f.readlines() for line in lines: points = line.split(',')[0:8] word = line.split(',')[9].rstrip('\n').strip('"') difficult = 1 if line.split(',')[8] != '0' else 0 segmentation = [int(pt) for pt in points] x = max(0, min(segmentation[0::2])) y = max(0, min(segmentation[1::2])) w = abs(max(segmentation[0::2]) - x) h = abs(max(segmentation[1::2]) - y) bbox = [x, y, w, h] if word == '###' or difficult == 1: iscrowd = 1 else: iscrowd = 0 anno = dict( iscrowd=iscrowd, category_id=1, bbox=bbox, area=w * h, segmentation=[segmentation]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def parse_args(): parser = argparse.ArgumentParser( description='Generate training and val set of RCTW.') parser.add_argument('root_path', help='Root dir path of RCTW') parser.add_argument( '--val-ratio', help='Split ratio for val set', default=0.0, type=float) parser.add_argument( '--nproc', default=1, type=int, help='Number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path ratio = args.val_ratio trn_files, val_files = collect_files( osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio) # Train set with mmengine.Timer( print_tmpl='It takes {}s to convert RCTW Training annotation'): trn_infos = collect_annotations(trn_files, nproc=args.nproc) dump_ocr_data(trn_infos, osp.join(root_path, 'instances_training.json'), 'textdet') # Val set if len(val_files) > 0: with mmengine.Timer( print_tmpl='It takes {}s to convert RCTW Val annotation'): val_infos = collect_annotations(val_files, nproc=args.nproc) dump_ocr_data(val_infos, osp.join(root_path, 'instances_val.json'), 'textdet') if __name__ == '__main__': main()