# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmocr.registry import MODELS @MODELS.register_module() class MaskedDiceLoss(nn.Module): """Masked dice loss. Args: eps (float, optional): Eps to avoid zero-divison error. Defaults to 1e-6. """ def __init__(self, eps: float = 1e-6) -> None: super().__init__() assert isinstance(eps, float) self.eps = eps def forward(self, pred: torch.Tensor, gt: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Forward function. Args: pred (torch.Tensor): The prediction in any shape. gt (torch.Tensor): The learning target of the prediction in the same shape as pred. mask (torch.Tensor, optional): Binary mask in the same shape of pred, indicating positive regions to calculate the loss. Whole region will be taken into account if not provided. Defaults to None. Returns: torch.Tensor: The loss value. """ assert pred.size() == gt.size() and gt.numel() > 0 if mask is None: mask = torch.ones_like(gt) assert mask.size() == gt.size() pred = pred.contiguous().view(pred.size(0), -1) gt = gt.contiguous().view(gt.size(0), -1) mask = mask.contiguous().view(mask.size(0), -1) pred = pred * mask gt = gt * mask dice_coeff = (2 * (pred * gt).sum()) / ( pred.sum() + gt.sum() + self.eps) return 1 - dice_coeff @MODELS.register_module() class MaskedSquareDiceLoss(nn.Module): """Masked square dice loss. Args: eps (float, optional): Eps to avoid zero-divison error. Defaults to 1e-3. """ def __init__(self, eps: float = 1e-3) -> None: super().__init__() assert isinstance(eps, float) self.eps = eps def forward(self, pred: torch.Tensor, gt: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Forward function. Args: pred (torch.Tensor): The prediction in any shape. gt (torch.Tensor): The learning target of the prediction in the same shape as pred. mask (torch.Tensor, optional): Binary mask in the same shape of pred, indicating positive regions to calculate the loss. Whole region will be taken into account if not provided. Defaults to None. Returns: torch.Tensor: The loss value. """ assert pred.size() == gt.size() and gt.numel() > 0 if mask is None: mask = torch.ones_like(gt) assert mask.size() == gt.size() batch_size = pred.size(0) pred = pred.contiguous().view(batch_size, -1) gt = gt.contiguous().view(batch_size, -1).float() mask = mask.contiguous().view(batch_size, -1).float() pred = pred * mask gt = gt * mask a = torch.sum(pred * gt, dim=1) b = torch.sum(pred * pred, dim=1) + self.eps c = torch.sum(gt * gt, dim=1) + self.eps d = (2 * a) / (b + c) loss = 1 - d loss = torch.mean(loss) return loss