# The transcription of NAF dataset is annotated from Tessaract OCR, which is # not accurate. The test/valid set ones were hand corrected, but the train set # was only hand corrected a little. They aren't very good results. Better # not to use them for recognition and text spotting. _base_ = ['textdet.py'] _base_.train_preparer.parser.update(dict(ignore=['¿', '§'], det=False)) _base_.test_preparer.parser.update(dict(ignore=['¿', '§'], det=False)) _base_.val_preparer.parser.update(dict(ignore=['¿', '§'], det=False)) _base_.train_preparer.packer.type = 'TextRecogCropPacker' _base_.test_preparer.packer.type = 'TextRecogCropPacker' _base_.val_preparer.packer.type = 'TextRecogCropPacker' _base_.train_preparer.gatherer.img_dir = 'textdet_imgs/train' _base_.test_preparer.gatherer.img_dir = 'textdet_imgs/test' _base_.val_preparer.gatherer.img_dir = 'textdet_imgs/val' config_generator = dict( type='TextRecogConfigGenerator', val_anns=[dict(ann_file='textrecog_val.json', dataset_postfix='')])