# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import mmcv import mmengine import numpy as np from mmocr.utils import dump_ocr_data def collect_files(img_dir, gt_dir): """Collect all images and their corresponding groundtruth files. Args: img_dir (str): The image directory gt_dir (str): The groundtruth directory Returns: files (list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir ann_list, imgs_list = [], [] for img in os.listdir(img_dir): imgs_list.append(osp.join(img_dir, img)) ann_list.append(osp.join(gt_dir, 'gt_' + img.replace('jpg', 'txt'))) files = list(zip(imgs_list, ann_list)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') return files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files (list): The list of tuples (image_file, groundtruth_file) nproc (int): The number of process to collect annotations Returns: images (list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmengine.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmengine.track_progress(load_img_info, files) return images def load_img_info(files): """Load the information of one image. Args: files (tuple): The tuple of (img_file, groundtruth_file) Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files # read imgs while ignoring orientations img = mmcv.imread(img_file, 'unchanged') img_info = dict( file_name=osp.join(osp.basename(img_file)), height=img.shape[0], width=img.shape[1], segm_file=osp.join(osp.basename(gt_file))) if osp.splitext(gt_file)[1] == '.txt': img_info = load_txt_info(gt_file, img_info) else: raise NotImplementedError return img_info def load_txt_info(gt_file, img_info): """Collect the annotation information. # Annotation Format # x1, y1, x2, y2, x3, y3, x4, y4, transcript Args: gt_file (str): The path to ground-truth img_info (dict): The dict of the img and annotation information Returns: img_info (dict): The dict of the img and annotation information """ with open(gt_file) as f: anno_info = [] annotations = f.readlines() for ann in annotations: try: ann_box = np.array(ann.split(',')[0:8]).astype(int).tolist() except ValueError: # skip invalid annotation line continue x = max(0, min(ann_box[0::2])) y = max(0, min(ann_box[1::2])) w, h = max(ann_box[0::2]) - x, max(ann_box[1::2]) - y bbox = [x, y, w, h] segmentation = ann_box word = ann.split(',')[-1].replace('\n', '').strip() anno = dict( iscrowd=0 if word != '###' else 1, category_id=1, bbox=bbox, area=w * h, segmentation=[segmentation]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def parse_args(): parser = argparse.ArgumentParser( description='Generate training and val set of DeText ') parser.add_argument('root_path', help='Root dir path of DeText') parser.add_argument( '--nproc', default=1, type=int, help='Number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path for split in ['training', 'val']: print(f'Processing {split} set...') with mmengine.Timer( print_tmpl='It takes {}s to convert DeText annotation'): files = collect_files( osp.join(root_path, 'imgs', split), osp.join(root_path, 'annotations', split)) image_infos = collect_annotations(files, nproc=args.nproc) dump_ocr_data(image_infos, osp.join(root_path, 'instances_' + split + '.json'), 'textdet') if __name__ == '__main__': main()