# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import xml.etree.ElementTree as ET import mmcv import mmengine from mmocr.utils import dump_ocr_data def collect_files(img_dir, gt_dir): """Collect all images and their corresponding groundtruth files. Args: img_dir (str): The image directory gt_dir (str): The groundtruth directory Returns: files (list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir ann_list, imgs_list = [], [] for img_file in os.listdir(img_dir): ann_path = osp.join(gt_dir, img_file.split('.')[0] + '.xml') if os.path.exists(ann_path): ann_list.append(ann_path) imgs_list.append(osp.join(img_dir, img_file)) files = list(zip(imgs_list, ann_list)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') return files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files (list): The list of tuples (image_file, groundtruth_file) nproc (int): The number of process to collect annotations Returns: images (list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmengine.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmengine.track_progress(load_img_info, files) return images def load_img_info(files): """Load the information of one image. Args: files (tuple): The tuple of (img_file, groundtruth_file) Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( '.')[0] # read imgs while ignoring orientations img = mmcv.imread(img_file, 'unchanged') try: img_info = dict( file_name=osp.join(osp.basename(img_file)), height=img.shape[0], width=img.shape[1], segm_file=osp.join(osp.basename(gt_file))) except AttributeError: print(f'Skip broken img {img_file}') return None if osp.splitext(gt_file)[1] == '.xml': img_info = load_xml_info(gt_file, img_info) else: raise NotImplementedError return img_info def load_xml_info(gt_file, img_info): """Collect the annotation information. The annotation format is as the following: ... SMT Unspecified 0 0 157 294 237 357 Args: gt_file (str): The path to ground-truth img_info (dict): The dict of the img and annotation information Returns: img_info (dict): The dict of the img and annotation information """ obj = ET.parse(gt_file) root = obj.getroot() anno_info = [] for object in root.iter('object'): word = object.find('name').text iscrowd = 1 if len(word) == 0 else 0 x1 = int(object.find('bndbox').find('xmin').text) y1 = int(object.find('bndbox').find('ymin').text) x2 = int(object.find('bndbox').find('xmax').text) y2 = int(object.find('bndbox').find('ymax').text) x = max(0, min(x1, x2)) y = max(0, min(y1, y2)) w, h = abs(x2 - x1), abs(y2 - y1) bbox = [x1, y1, w, h] segmentation = [x, y, x + w, y, x + w, y + h, x, y + h] anno = dict( iscrowd=iscrowd, category_id=1, bbox=bbox, area=w * h, segmentation=[segmentation]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def split_train_val_list(full_list, val_ratio): """Split list by val_ratio. Args: full_list (list): List to be split val_ratio (float): Split ratio for val set return: list(list, list): Train_list and val_list """ n_total = len(full_list) offset = int(n_total * val_ratio) if n_total == 0 or offset < 1: return [], full_list val_list = full_list[:offset] train_list = full_list[offset:] return [train_list, val_list] def parse_args(): parser = argparse.ArgumentParser( description='Generate training and val set of ILST ') parser.add_argument('root_path', help='Root dir path of ILST') parser.add_argument( '--val-ratio', help='Split ratio for val set', default=0., type=float) parser.add_argument( '--nproc', default=1, type=int, help='Number of processes') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path with mmengine.Timer(print_tmpl='It takes {}s to convert ILST annotation'): files = collect_files( osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations')) image_infos = collect_annotations(files, nproc=args.nproc) if args.val_ratio: image_infos = split_train_val_list(image_infos, args.val_ratio) splits = ['training', 'val'] else: image_infos = [image_infos] splits = ['training'] for i, split in enumerate(splits): dump_ocr_data( list(filter(None, image_infos[i])), osp.join(root_path, 'instances_' + split + '.json'), 'textdet') if __name__ == '__main__': main()