# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import xml.etree.ElementTree as ET import mmcv import mmengine from mmocr.utils import dump_ocr_data def collect_files(data_dir): """Collect all images and their corresponding groundtruth files. Args: data_dir (str): The directory to dataset Returns: files (list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(data_dir, str) assert data_dir ann_list, imgs_list = [], [] for video_dir in os.listdir(data_dir): for frame_dir in os.listdir(osp.join(data_dir, video_dir)): crt_dir = osp.join(data_dir, video_dir, frame_dir) if not osp.isdir(crt_dir): continue for crt_file in os.listdir(crt_dir): if crt_file.endswith('xml'): ann_path = osp.join(crt_dir, crt_file) img_path = osp.join(crt_dir, crt_file.replace('xml', 'png')) if os.path.exists(img_path): ann_list.append(ann_path) imgs_list.append(img_path) else: continue files = list(zip(imgs_list, ann_list)) assert len(files), f'No images found in {data_dir}' print(f'Loaded {len(files)} images from {data_dir}') return files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files (list): The list of tuples (image_file, groundtruth_file) nproc (int): The number of process to collect annotations Returns: images (list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmengine.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmengine.track_progress(load_img_info, files) return images def load_img_info(files): """Load the information of one image. Args: files (tuple): The tuple of (img_file, groundtruth_file) Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( '.')[0] # read imgs while ignoring orientations img = mmcv.imread(img_file, 'unchanged') img_file = os.path.split(img_file)[-1] img_info = dict( file_name=img_file, height=img.shape[0], width=img.shape[1], segm_file=osp.join(osp.basename(gt_file))) if osp.splitext(gt_file)[1] == '.xml': img_info = load_xml_info(gt_file, img_info) else: raise NotImplementedError return img_info def load_xml_info(gt_file, img_info): """Collect the annotation information. The annotation format is as the following: hierarchy Unspecified 0 0 657 467 839 557 Args: gt_file (str): The path to ground-truth img_info (dict): The dict of the img and annotation information Returns: img_info (dict): The dict of the img and annotation information """ obj = ET.parse(gt_file) root = obj.getroot() anno_info = [] for obj in root.iter('object'): x = max(0, int(obj.find('bndbox').find('xmin').text)) y = max(0, int(obj.find('bndbox').find('ymin').text)) xmax = int(obj.find('bndbox').find('xmax').text) ymax = int(obj.find('bndbox').find('ymax').text) w, h = abs(xmax - x), abs(ymax - y) bbox = [x, y, w, h] segmentation = [x, y, x + w, y, x + w, y + h, x, y + h] anno = dict( iscrowd=0, category_id=1, bbox=bbox, area=w * h, segmentation=[segmentation]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def parse_args(): parser = argparse.ArgumentParser( description='Generate training, val and test set of Lecture Video DB ') parser.add_argument('root_path', help='Root dir path of Lecture Video DB') parser.add_argument( '--nproc', default=1, type=int, help='number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path for split in ['train', 'val', 'test']: print(f'Processing {split} set...') with mmengine.Timer( print_tmpl='It takes {}s to convert LV annotation'): files = collect_files(osp.join(root_path, 'imgs', split)) image_infos = collect_annotations(files, nproc=args.nproc) dump_ocr_data(image_infos, osp.join(root_path, 'instances_' + split + '.json'), 'textdet') if __name__ == '__main__': main()