_base_ = [ 'dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py', ] load_from = None _base_.model.backbone = dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')) _base_.train_dataloader.num_workers = 24 _base_.optim_wrapper.optimizer.lr = 0.002 param_scheduler = [ dict(type='LinearLR', end=100, start_factor=0.001), dict(type='PolyLR', power=0.9, eta_min=1e-7, begin=100, end=1200), ]