_base_ = [ '_base_psenet_resnet50_fpnf.py', '../_base_/datasets/icdar2015.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adam_600e.py', ] # optimizer optim_wrapper = dict(optimizer=dict(lr=1e-4)) train_cfg = dict(val_interval=40) param_scheduler = [ dict(type='MultiStepLR', milestones=[200, 400], end=600), ] # dataset settings icdar2015_textdet_train = _base_.icdar2015_textdet_train icdar2015_textdet_test = _base_.icdar2015_textdet_test # use quadrilaterals for icdar2015 model = dict( backbone=dict(style='pytorch'), det_head=dict(postprocessor=dict(text_repr_type='quad'))) # pipeline settings icdar2015_textdet_train.pipeline = _base_.train_pipeline icdar2015_textdet_test.pipeline = _base_.test_pipeline train_dataloader = dict( batch_size=16, num_workers=8, persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=True), dataset=icdar2015_textdet_train) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=icdar2015_textdet_test) test_dataloader = val_dataloader auto_scale_lr = dict(base_batch_size=64 * 4)