dictionary = dict( type='Dictionary', dict_file='{{ fileDirname }}/../../../dicts/lower_english_digits.txt', with_padding=True) model = dict( type='CRNN', preprocessor=None, backbone=dict(type='MiniVGG', leaky_relu=False, input_channels=1), encoder=None, decoder=dict( type='CRNNDecoder', in_channels=512, rnn_flag=True, module_loss=dict(type='CTCModuleLoss', letter_case='lower'), postprocessor=dict(type='CTCPostProcessor'), dictionary=dictionary), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[127], std=[127])) train_pipeline = [ dict( type='LoadImageFromFile', color_type='grayscale', ignore_empty=True, min_size=2), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(100, 32), keep_ratio=False), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='grayscale'), dict( type='RescaleToHeight', height=32, min_width=32, max_width=None, width_divisor=16), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] tta_pipeline = [ dict(type='LoadImageFromFile', color_type='grayscale'), dict( type='TestTimeAug', transforms=[ [ dict( type='ConditionApply', true_transforms=[ dict( type='ImgAugWrapper', args=[dict(cls='Rot90', k=0, keep_size=False)]) ], condition="results['img_shape'][1]