# training schedule for 1x _base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/toy_data.py', '../_base_/schedules/schedule_adadelta_5e.py', '_base_crnn_mini-vgg.py', ] # dataset settings train_list = [_base_.toy_rec_train] test_list = [_base_.toy_rec_test] default_hooks = dict(logger=dict(type='LoggerHook', interval=50), ) train_dataloader = dict( batch_size=64, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)) test_dataloader = val_dataloader _base_.model.decoder.dictionary.update( dict(with_unknown=True, unknown_token=None)) _base_.train_cfg.update(dict(max_epochs=200, val_interval=10)) val_evaluator = dict(dataset_prefixes=['Toy']) test_evaluator = val_evaluator