dictionary = dict( type='Dictionary', dict_file= # noqa '{{ fileDirname }}/../../../dicts/english_digits_symbols_space.txt', with_padding=True, with_unknown=True, same_start_end=True, with_start=True, with_end=True) model = dict( type='MAERec', backbone=dict( type='VisionTransformer', img_size=(32, 128), patch_size=(4, 4), embed_dim=384, depth=12, num_heads=6, mlp_ratio=4.0, qkv_bias=True, pretrained=None), decoder=dict( type='MAERecDecoder', n_layers=6, d_embedding=384, n_head=8, d_model=384, d_inner=384 * 4, d_k=48, d_v=48, postprocessor=dict(type='AttentionPostprocessor'), module_loss=dict( type='CEModuleLoss', reduction='mean', ignore_first_char=True), max_seq_len=48, dictionary=dictionary), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])) train_pipeline = [ dict(type='LoadImageFromFile', ignore_empty=True, min_size=0), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(128, 32)), dict( type='RandomApply', prob=0.5, transforms=[ dict( type='RandomChoice', transforms=[ dict( type='RandomRotate', max_angle=15, ), dict( type='TorchVisionWrapper', op='RandomAffine', degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.), shear=(-45, 45), ), dict( type='TorchVisionWrapper', op='RandomPerspective', distortion_scale=0.5, p=1, ), ]) ], ), dict( type='RandomApply', prob=0.25, transforms=[ dict(type='PyramidRescale'), dict( type='mmdet.Albu', transforms=[ dict(type='GaussNoise', var_limit=(20, 20), p=0.5), dict(type='MotionBlur', blur_limit=7, p=0.5), ]), ]), dict( type='RandomApply', prob=0.25, transforms=[ dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.5, saturation=0.5, contrast=0.5, hue=0.1), ]), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(128, 32)), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] tta_pipeline = [ dict(type='LoadImageFromFile'), dict( type='TestTimeAug', transforms=[ [ dict( type='ConditionApply', true_transforms=[ dict( type='ImgAugWrapper', args=[dict(cls='Rot90', k=0, keep_size=False)]) ], condition="results['img_shape'][1]