# training schedule for 1x _base_ = [ '_base_marec_vit_s.py', '../_base_/datasets/union14m_train.py', '../_base_/datasets/union14m_benchmark.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adamw_cos_6e.py', ] _base_.model.pop('backbone') model = dict( backbone=dict( type='VisionTransformer_LoRA', vit_config=dict( type='VisionTransformer', img_size=(32, 128), patch_size=(4, 4), embed_dim=384, depth=12, num_heads=6, mlp_ratio=4.0, qkv_bias=True, pretrained= # noqa '../mae/mae_pretrained/vit_small/vit_small_checkpoint-19.pth'), rank=4)) # dataset settings train_list = [ _base_.union14m_challenging, _base_.union14m_hard, _base_.union14m_medium, _base_.union14m_normal, _base_.union14m_easy ] val_list = [_base_.union14m_val] test_list = [ _base_.union14m_benchmark_artistic, _base_.union14m_benchmark_multi_oriented, _base_.union14m_benchmark_contextless, _base_.union14m_benchmark_curve, _base_.union14m_benchmark_incomplete, _base_.union14m_benchmark_incomplete_ori, _base_.union14m_benchmark_multi_words, _base_.union14m_benchmark_salient, _base_.union14m_benchmark_general, ] default_hooks = dict(logger=dict(type='LoggerHook', interval=50)) auto_scale_lr = dict(base_batch_size=512) train_dataset = dict( type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) test_dataset = dict( type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) val_dataset = dict( type='ConcatDataset', datasets=val_list, pipeline=_base_.test_pipeline) train_dataloader = dict( batch_size=128, num_workers=12, persistent_workers=True, pin_memory=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=train_dataset) test_dataloader = dict( batch_size=128, num_workers=4, persistent_workers=True, pin_memory=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=test_dataset) val_dataloader = dict( batch_size=128, num_workers=4, persistent_workers=True, pin_memory=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=val_dataset) val_evaluator = dict( dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) test_evaluator = dict(dataset_prefixes=[ 'artistic', 'multi-oriented', 'contextless', 'curve', 'incomplete', 'incomplete-ori', 'multi-words', 'salient', 'general' ])