_base_ = [ '_base_master_resnet31.py', '../_base_/datasets/toy_data.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adam_base.py', ] optim_wrapper = dict(optimizer=dict(lr=4e-4)) train_cfg = dict(max_epochs=12) # learning policy param_scheduler = [ dict(type='LinearLR', end=100, by_epoch=False), dict(type='MultiStepLR', milestones=[11], end=12), ] # dataset settings train_list = [_base_.toy_rec_train] test_list = [_base_.toy_rec_test] train_dataset = dict( type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) test_dataset = dict( type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) train_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=train_dataset) val_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=test_dataset) test_dataloader = val_dataloader val_evaluator = dict(dataset_prefixes=['Toy']) test_evaluator = val_evaluator