dictionary = dict( type='Dictionary', dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt', with_start=True, with_end=True, same_start_end=True, with_padding=True, with_unknown=True) model = dict( type='SARNet', data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[127, 127, 127], std=[127, 127, 127]), backbone=dict(type='ResNet31OCR'), encoder=dict( type='SAREncoder', enc_bi_rnn=False, enc_do_rnn=0.1, enc_gru=False, ), decoder=dict( type='ParallelSARDecoder', enc_bi_rnn=False, dec_bi_rnn=False, dec_do_rnn=0, dec_gru=False, pred_dropout=0.1, d_k=512, pred_concat=True, postprocessor=dict(type='AttentionPostprocessor'), module_loss=dict( type='CEModuleLoss', ignore_first_char=True, reduction='mean'), dictionary=dictionary, max_seq_len=30)) train_pipeline = [ dict(type='LoadImageFromFile', ignore_empty=True, min_size=2), dict(type='LoadOCRAnnotations', with_text=True), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] tta_pipeline = [ dict(type='LoadImageFromFile'), dict( type='TestTimeAug', transforms=[ [ dict( type='ConditionApply', true_transforms=[ dict( type='ImgAugWrapper', args=[dict(cls='Rot90', k=0, keep_size=False)]) ], condition="results['img_shape'][1]