dictionary = dict( type='Dictionary', dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt', with_padding=True, with_unknown=True, same_start_end=True, with_start=True, with_end=True) model = dict( type='SATRN', backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512), encoder=dict( type='SATRNEncoder', n_layers=12, n_head=8, d_k=512 // 8, d_v=512 // 8, d_model=512, n_position=100, d_inner=512 * 4, dropout=0.1), decoder=dict( type='NRTRDecoder', n_layers=6, d_embedding=512, n_head=8, d_model=512, d_inner=512 * 4, d_k=512 // 8, d_v=512 // 8, module_loss=dict( type='CEModuleLoss', flatten=True, ignore_first_char=True), dictionary=dictionary, max_seq_len=25, postprocessor=dict(type='AttentionPostprocessor')), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])) train_pipeline = [ dict(type='LoadImageFromFile', ignore_empty=True, min_size=0), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(100, 32), keep_ratio=False), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(100, 32), keep_ratio=False), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] tta_pipeline = [ dict(type='LoadImageFromFile'), dict( type='TestTimeAug', transforms=[ [ dict( type='ConditionApply', true_transforms=[ dict( type='ImgAugWrapper', args=[dict(cls='Rot90', k=0, keep_size=False)]) ], condition="results['img_shape'][1]