_base_ = [ '_base_dbnet_resnet18_fpnc.py', '../_base_/datasets/totaltext.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_sgd_1200e.py', ] train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True, ), dict(type='FixInvalidPolygon', min_poly_points=4), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True, ), dict(type='FixInvalidPolygon', min_poly_points=4), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # dataset settings totaltext_textdet_train = _base_.totaltext_textdet_train totaltext_textdet_test = _base_.totaltext_textdet_test totaltext_textdet_train.pipeline = train_pipeline totaltext_textdet_test.pipeline = test_pipeline train_dataloader = dict( batch_size=16, num_workers=16, pin_memory=True, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=totaltext_textdet_train) val_dataloader = dict( batch_size=1, num_workers=1, pin_memory=True, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=totaltext_textdet_test) test_dataloader = val_dataloader auto_scale_lr = dict(base_batch_size=16)