_base_ = [ '_base_psenet_resnet50_fpnf.py', '../_base_/datasets/ctw1500.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_adam_600e.py', ] # optimizer optim_wrapper = dict(optimizer=dict(lr=1e-4)) train_cfg = dict(val_interval=40) param_scheduler = [ dict(type='MultiStepLR', milestones=[200, 400], end=600), ] # dataset settings ctw1500_textdet_train = _base_.ctw1500_textdet_train ctw1500_textdet_test = _base_.ctw1500_textdet_test test_pipeline_ctw = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(1280, 1280), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # pipeline settings ctw1500_textdet_train.pipeline = _base_.train_pipeline ctw1500_textdet_test.pipeline = test_pipeline_ctw train_dataloader = dict( batch_size=16, num_workers=8, persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=True), dataset=ctw1500_textdet_train) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=ctw1500_textdet_test) test_dataloader = val_dataloader auto_scale_lr = dict(base_batch_size=64 * 4)