dictionary = dict( type='Dictionary', dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt', with_padding=True, with_unknown=True, same_start_end=True, with_start=True, with_end=True) model = dict( type='ASTER', preprocessor=dict( type='STN', in_channels=3, resized_image_size=(32, 64), output_image_size=(32, 100), num_control_points=20), backbone=dict( type='ResNet', in_channels=3, stem_channels=[32], block_cfgs=dict(type='BasicBlock', use_conv1x1='True'), arch_layers=[3, 4, 6, 6, 3], arch_channels=[32, 64, 128, 256, 512], strides=[(2, 2), (2, 2), (2, 1), (2, 1), (2, 1)], init_cfg=[ dict(type='Kaiming', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]), encoder=dict(type='ASTEREncoder', in_channels=512), decoder=dict( type='ASTERDecoder', max_seq_len=25, in_channels=512, emb_dims=512, attn_dims=512, hidden_size=512, postprocessor=dict(type='AttentionPostprocessor'), module_loss=dict( type='CEModuleLoss', flatten=True, ignore_first_char=True), dictionary=dictionary, ), data_preprocessor=dict( type='TextRecogDataPreprocessor', mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5])) train_pipeline = [ dict(type='LoadImageFromFile', ignore_empty=True, min_size=0), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(256, 64)), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(256, 64)), dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio', 'instances')) ] tta_pipeline = [ dict(type='LoadImageFromFile'), dict( type='TestTimeAug', transforms=[[ dict( type='ConditionApply', true_transforms=[ dict( type='ImgAugWrapper', args=[dict(cls='Rot90', k=0, keep_size=False)]) ], condition="results['img_shape'][1]