# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Union import torch import torch.nn as nn from mmocr import digit_version from mmocr.registry import MODELS @MODELS.register_module() class SmoothL1Loss(nn.SmoothL1Loss): """Smooth L1 loss.""" @MODELS.register_module() class MaskedSmoothL1Loss(nn.Module): """Masked Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1. eps (float, optional): Eps to avoid zero-division error. Defaults to 1e-6. """ def __init__(self, beta: Union[float, int] = 1, eps: float = 1e-6) -> None: super().__init__() if digit_version(torch.__version__) > digit_version('1.6.0'): if digit_version(torch.__version__) >= digit_version( '1.13.0') and beta == 0: beta = beta + eps self.smooth_l1_loss = nn.SmoothL1Loss(beta=beta, reduction='none') self.eps = eps self.beta = beta def forward(self, pred: torch.Tensor, gt: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Forward function. Args: pred (torch.Tensor): The prediction in any shape. gt (torch.Tensor): The learning target of the prediction in the same shape as pred. mask (torch.Tensor, optional): Binary mask in the same shape of pred, indicating positive regions to calculate the loss. Whole region will be taken into account if not provided. Defaults to None. Returns: torch.Tensor: The loss value. """ assert pred.size() == gt.size() and gt.numel() > 0 if mask is None: mask = torch.ones_like(gt).bool() assert mask.size() == gt.size() x = pred * mask y = gt * mask if digit_version(torch.__version__) > digit_version('1.6.0'): loss = self.smooth_l1_loss(x, y) else: loss = torch.zeros_like(gt) diff = torch.abs(x - y) mask_beta = diff < self.beta loss[mask_beta] = 0.5 * torch.square(diff)[mask_beta] / self.beta loss[~mask_beta] = diff[~mask_beta] - 0.5 * self.beta return loss.sum() / (mask.sum() + self.eps)