# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Union import torch from mmengine.model.base_model import BaseModel from mmocr.utils import (OptConfigType, OptMultiConfig, OptRecSampleList, RecForwardResults, RecSampleList) class BaseRecognizer(BaseModel, metaclass=ABCMeta): """Base class for recognizer. Args: data_preprocessor (dict or ConfigDict, optional): The pre-process config of :class:`BaseDataPreprocessor`. it usually includes, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. init_cfg (dict or ConfigDict or List[dict], optional): the config to control the initialization. Defaults to None. """ def __init__(self, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( data_preprocessor=data_preprocessor, init_cfg=init_cfg) @property def with_backbone(self): """bool: whether the recognizer has a backbone""" return hasattr(self, 'backbone') @property def with_encoder(self): """bool: whether the recognizer has an encoder""" return hasattr(self, 'encoder') @property def with_preprocessor(self): """bool: whether the recognizer has a preprocessor""" return hasattr(self, 'preprocessor') @property def with_decoder(self): """bool: whether the recognizer has a decoder""" return hasattr(self, 'decoder') @abstractmethod def extract_feat(self, inputs: torch.Tensor) -> torch.Tensor: """Extract features from images.""" pass def forward(self, inputs: torch.Tensor, data_samples: OptRecSampleList = None, mode: str = 'tensor', **kwargs) -> RecForwardResults: """The unified entry for a forward process in both training and test. The method should accept three modes: "tensor", "predict" and "loss": - "tensor": Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - "predict": Forward and return the predictions, which are fully processed to a list of :obj:`DetDataSample`. - "loss": Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (list[:obj:`DetDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to 'tensor'. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of :obj:`DetDataSample`. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'loss': return self.loss(inputs, data_samples, **kwargs) elif mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'tensor': return self._forward(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode') @abstractmethod def loss(self, inputs: torch.Tensor, data_samples: RecSampleList, **kwargs) -> Union[dict, tuple]: """Calculate losses from a batch of inputs and data samples.""" pass @abstractmethod def predict(self, inputs: torch.Tensor, data_samples: RecSampleList, **kwargs) -> RecSampleList: """Predict results from a batch of inputs and data samples with post- processing.""" pass @abstractmethod def _forward(self, inputs: torch.Tensor, data_samples: OptRecSampleList = None, **kwargs): """Network forward process. Usually includes backbone, neck and head forward without any post- processing. """ pass