data_root = 'data/iiit5k' cache_path = 'data/cache' train_preparer = dict( obtainer=dict( type='NaiveDataObtainer', cache_path=cache_path, files=[ dict( url='http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/' 'IIIT5K-Word_V3.0.tar.gz', save_name='IIIT5K.tar.gz', md5='56781bc327d22066aa1c239ee788fd46', content=['image'], mapping=[['IIIT5K/IIIT5K/train', 'textrecog_imgs/train']]), dict( url='https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/' 'train_label.txt', save_name='iiit5k_train.txt', md5='beee914aaf3ec5794622b843d743c5a6', content=['annotation'], mapping=[['iiit5k_train.txt', 'annotations/train.txt']]) ]), gatherer=dict(type='MonoGatherer', ann_name='train.txt'), parser=dict( type='ICDARTxtTextRecogAnnParser', encoding='utf-8', separator=' ', format='img text'), packer=dict(type='TextRecogPacker'), dumper=dict(type='JsonDumper'), ) test_preparer = dict( obtainer=dict( type='NaiveDataObtainer', cache_path=cache_path, files=[ dict( url='http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/' 'IIIT5K-Word_V3.0.tar.gz', save_name='IIIT5K.tar.gz', md5='56781bc327d22066aa1c239ee788fd46', content=['image'], mapping=[['IIIT5K/IIIT5K/test', 'textrecog_imgs/test']]), dict( url='https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/' 'test_label.txt', save_name='iiit5k_test.txt', md5='117bcd9b4245f61fa57bfb37361674b3', content=['annotation'], mapping=[['iiit5k_test.txt', 'annotations/test.txt']]) ]), gatherer=dict(type='MonoGatherer', ann_name='test.txt'), parser=dict( type='ICDARTxtTextRecogAnnParser', encoding='utf-8', separator=' ', format='img text'), packer=dict(type='TextRecogPacker'), dumper=dict(type='JsonDumper'), ) delete = ['annotations', 'IIIT5K'] config_generator = dict(type='TextRecogConfigGenerator')