data_root = 'data/naf' cache_path = 'data/cache' obtainer = dict( type='NaiveDataObtainer', cache_path=cache_path, files=[ dict( url='https://github.com/herobd/NAF_dataset/releases/' 'download/v1.0/labeled_images.tar.gz', save_name='naf_image.tar.gz', md5='6521cdc25c313a1f2928a16a77ad8f29', content=['image'], mapping=[['naf_image/labeled_images', 'temp_images/']]), dict( url='https://github.com/herobd/NAF_dataset/archive/' 'refs/heads/master.zip', save_name='naf_anno.zip', md5='abf5af6266cc527d772231751bc884b3', content=['annotation'], mapping=[ [ 'naf_anno/NAF_dataset-master/groups/**/*.json', 'annotations/' ], [ 'naf_anno/NAF_dataset-master/train_valid_test_split.json', 'data_split.json' ] ]), ]) train_preparer = dict( obtainer=obtainer, gatherer=dict(type='NAFGatherer'), parser=dict(type='NAFAnnParser', det=True), packer=dict(type='TextDetPacker'), dumper=dict(type='JsonDumper'), ) test_preparer = train_preparer val_preparer = train_preparer delete = [ 'temp_images', 'data_split.json', 'annotations', 'naf_anno', 'naf_image' ] config_generator = dict( type='TextDetConfigGenerator', val_anns=[dict(ann_file='textdet_val.json', dataset_postfix='')])