_base_ = ['textdet.py'] _base_.train_preparer.obtainer.files.append( dict( url='https://download.openmmlab.com/mmocr/data/1.x/recog/' 'SynthText/subset_textrecog_train.json', save_name='subset_textrecog_train.json', md5='151c4edd1cc240362046d3a6f8f4b4c6', split=['train'], content=['annotation'])) _base_.train_preparer.obtainer.files.append( dict( url='https://download.openmmlab.com/mmocr/data/1.x/recog/' 'SynthText/alphanumeric_textrecog_train.json', save_name='alphanumeric_textrecog_train.json', md5='89b80163435794ca117a124d081d68a9', split=['train'], content=['annotation'])) _base_.train_preparer.gatherer.img_dir = 'textdet_imgs/train' _base_.train_preparer.packer.type = 'TextRecogCropPacker' config_generator = dict( type='TextRecogConfigGenerator', train_anns=[ dict(ann_file='textrecog_train.json', dataset_postfix=''), dict(ann_file='subset_textrecog_train.json', dataset_postfix='sub'), dict( ann_file='alphanumeric_textrecog_train.json', dataset_postfix='an'), ], test_anns=None)