# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import mmengine from mmocr.utils import dump_ocr_data def collect_files(img_dir, gt_dir, split_info): """Collect all images and their corresponding groundtruth files. Args: img_dir (str): The image directory gt_dir (str): The groundtruth directory split_info (dict): The split information for train/val/test Returns: files (list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir assert isinstance(split_info, dict) assert split_info ann_list, imgs_list = [], [] for group in split_info: for img in split_info[group]: image_path = osp.join(img_dir, img) anno_path = osp.join(gt_dir, 'groups', group, img.replace('jpg', 'json')) # Filtering out the missing images if not osp.exists(image_path) or not osp.exists(anno_path): continue imgs_list.append(image_path) ann_list.append(anno_path) files = list(zip(imgs_list, ann_list)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') return files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files (list): The list of tuples (image_file, groundtruth_file) nproc (int): The number of process to collect annotations Returns: images (list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmengine.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmengine.track_progress(load_img_info, files) return images def load_img_info(files): """Load the information of one image. Args: files (tuple): The tuple of (img_file, groundtruth_file) Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( '.')[0] # Read imgs while ignoring orientations img = mmcv.imread(img_file, 'unchanged') img_info = dict( file_name=osp.join(osp.basename(img_file)), height=img.shape[0], width=img.shape[1], segm_file=osp.join(osp.basename(gt_file))) if osp.splitext(gt_file)[1] == '.json': img_info = load_json_info(gt_file, img_info) else: raise NotImplementedError return img_info def load_json_info(gt_file, img_info): """Collect the annotation information. Annotation Format { 'textBBs': [{ 'poly_points': [[435,1406], [466,1406], [466,1439], [435,1439]], "type": "text", "id": "t1", }], ... } Some special characters are used in the transcription: "«text»" indicates that "text" had a strikethrough "¿" indicates the transcriber could not read a character "§" indicates the whole line or word was illegible "" (empty string) is if the field was blank Args: gt_file (str): The path to ground-truth img_info (dict): The dict of the img and annotation information Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(gt_file, str) assert isinstance(img_info, dict) annotation = mmengine.load(gt_file) anno_info = [] # 'textBBs' contains the printed texts of the table while 'fieldBBs' # contains the text filled by human. for box_type in ['textBBs', 'fieldBBs']: for anno in annotation[box_type]: # Skip blanks if box_type == 'fieldBBs': if anno['type'] == 'blank': continue xs, ys, segmentation = [], [], [] for p in anno['poly_points']: xs.append(p[0]) ys.append(p[1]) segmentation.append(p[0]) segmentation.append(p[1]) x, y = max(0, min(xs)), max(0, min(ys)) w, h = max(xs) - x, max(ys) - y bbox = [x, y, w, h] anno = dict( iscrowd=0, category_id=1, bbox=bbox, area=w * h, segmentation=[segmentation]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def parse_args(): parser = argparse.ArgumentParser( description='Generate training, val, and test set of NAF ') parser.add_argument('root_path', help='Root dir path of NAF') parser.add_argument( '--nproc', default=1, type=int, help='Number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path split_info = mmengine.load( osp.join(root_path, 'annotations', 'train_valid_test_split.json')) split_info['training'] = split_info.pop('train') split_info['val'] = split_info.pop('valid') for split in ['training', 'val', 'test']: print(f'Processing {split} set...') with mmengine.Timer( print_tmpl='It takes {}s to convert NAF annotation'): files = collect_files( osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), split_info[split]) image_infos = collect_annotations(files, nproc=args.nproc) dump_ocr_data(image_infos, osp.join(root_path, 'instances_' + split + '.json'), 'textdet') if __name__ == '__main__': main()