# Copyright (c) OpenMMLab. All rights reserved. import argparse import math import os import os.path as osp import xml.etree.ElementTree as ET import mmcv import mmengine from mmocr.utils import crop_img, dump_ocr_data def collect_files(img_dir, gt_dir, ratio): """Collect all images and their corresponding groundtruth files. Args: img_dir (str): The image directory gt_dir (str): The groundtruth directory ratio (float): Split ratio for val set Returns: files (list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir assert isinstance(ratio, float) assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0' ann_list, imgs_list = [], [] for img_file in os.listdir(img_dir): ann_list.append(osp.join(gt_dir, img_file.split('.')[0] + '.xml')) imgs_list.append(osp.join(img_dir, img_file)) all_files = list(zip(sorted(imgs_list), sorted(ann_list))) assert len(all_files), f'No images found in {img_dir}' print(f'Loaded {len(all_files)} images from {img_dir}') trn_files, val_files = [], [] if ratio > 0: for i, file in enumerate(all_files): if i % math.floor(1 / ratio): trn_files.append(file) else: val_files.append(file) else: trn_files, val_files = all_files, [] print(f'training #{len(trn_files)}, val #{len(val_files)}') return trn_files, val_files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files (list): The list of tuples (image_file, groundtruth_file) nproc (int): The number of process to collect annotations Returns: images (list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmengine.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmengine.track_progress(load_img_info, files) return images def load_img_info(files): """Load the information of one image. Args: files (tuple): The tuple of (img_file, groundtruth_file) Returns: img_info (dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( '.')[0] # read imgs while ignoring orientations img = mmcv.imread(img_file, 'unchanged') img_info = dict( file_name=osp.join(osp.basename(img_file)), height=img.shape[0], width=img.shape[1], segm_file=osp.join(osp.basename(gt_file))) if osp.splitext(gt_file)[1] == '.xml': img_info = load_xml_info(gt_file, img_info) else: raise NotImplementedError return img_info def load_xml_info(gt_file, img_info): """Collect the annotation information. Annotation Format DSC02306.JPG no 2 Args: gt_file (str): The path to ground-truth img_info (dict): The dict of the img and annotation information Returns: img_info (dict): The dict of the img and annotation information """ obj = ET.parse(gt_file) root = obj.getroot() anno_info = [] for word in root.iter('word'): x, y = max(0, int(word.attrib['x'])), max(0, int(word.attrib['y'])) w, h = int(word.attrib['width']), int(word.attrib['height']) bbox = [x, y, x + w, y, x + w, y + h, x, y + h] chars = [] for character in word.iter('character'): chars.append(character.attrib['char']) word = ''.join(chars) if len(word) == 0: continue anno = dict(bbox=bbox, word=word) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def generate_ann(root_path, split, image_infos, preserve_vertical): """Generate cropped annotations and label txt file. Args: root_path (str): The root path of the dataset split (str): The split of dataset. Namely: training or test image_infos (list[dict]): A list of dicts of the img and annotation information preserve_vertical (bool): Whether to preserve vertical texts format (str): Annotation format, should be either 'txt' or 'jsonl' """ dst_image_root = osp.join(root_path, 'crops', split) ignore_image_root = osp.join(root_path, 'ignores', split) if split == 'training': dst_label_file = osp.join(root_path, 'train_label.json') elif split == 'val': dst_label_file = osp.join(root_path, 'val_label.json') mmengine.mkdir_or_exist(dst_image_root) mmengine.mkdir_or_exist(ignore_image_root) img_info = [] for image_info in image_infos: index = 1 src_img_path = osp.join(root_path, 'imgs', image_info['file_name']) image = mmcv.imread(src_img_path) src_img_root = image_info['file_name'].split('.')[0] for anno in image_info['anno_info']: word = anno['word'] dst_img = crop_img(image, anno['bbox'], 0, 0) h, w, _ = dst_img.shape dst_img_name = f'{src_img_root}_{index}.png' index += 1 # Skip invalid annotations if min(dst_img.shape) == 0: continue # Filter out vertical texts if not preserve_vertical and h / w > 2: dst_img_path = osp.join(ignore_image_root, dst_img_name) mmcv.imwrite(dst_img, dst_img_path) continue dst_img_path = osp.join(dst_image_root, dst_img_name) mmcv.imwrite(dst_img, dst_img_path) img_info.append({ 'file_name': dst_img_name, 'anno_info': [{ 'text': word }] }) ensure_ascii = dict(ensure_ascii=False) dump_ocr_data(img_info, dst_label_file, 'textrecog', **ensure_ascii) def parse_args(): parser = argparse.ArgumentParser( description='Generate training and val set of KAIST ') parser.add_argument('root_path', help='Root dir path of KAIST') parser.add_argument( '--val-ratio', help='Split ratio for val set', default=0.0, type=float) parser.add_argument( '--preserve-vertical', help='Preserve samples containing vertical texts', action='store_true') parser.add_argument( '--nproc', default=1, type=int, help='Number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path ratio = args.val_ratio trn_files, val_files = collect_files( osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio) # Train set trn_infos = collect_annotations(trn_files, nproc=args.nproc) with mmengine.Timer( print_tmpl='It takes {}s to convert KAIST Training annotation'): generate_ann(root_path, 'training', trn_infos, args.preserve_vertical) # Val set if len(val_files) > 0: val_infos = collect_annotations(val_files, nproc=args.nproc) with mmengine.Timer( print_tmpl='It takes {}s to convert KAIST Val annotation'): generate_ann(root_path, 'val', val_infos, args.preserve_vertical) if __name__ == '__main__': main()