Spaces:
Sleeping
Sleeping
Mr-Vicky-01
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
|
|
|
|
|
|
3 |
from streamlit_chat import message
|
4 |
import google.generativeai as genai
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
-
from langchain import LLMChain
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
|
9 |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
@@ -14,13 +15,15 @@ llm = ChatGoogleGenerativeAI(model="gemini-pro",
|
|
14 |
|
15 |
|
16 |
template = """You are a friendly chat assistant called "CRETA" having a conversation with a human and you are created by Pachaiappan an AI Specialist.
|
|
|
|
|
17 |
previous_chat:
|
18 |
{chat_history}
|
19 |
Human: {human_input}
|
20 |
Chatbot:"""
|
21 |
|
22 |
prompt = PromptTemplate(
|
23 |
-
input_variables=["chat_history", "human_input"], template=template
|
24 |
)
|
25 |
|
26 |
llm_chain = LLMChain(
|
@@ -31,13 +34,16 @@ llm_chain = LLMChain(
|
|
31 |
|
32 |
|
33 |
previous_response = ""
|
|
|
34 |
def conversational_chat(query):
|
35 |
-
global previous_response
|
36 |
for i in st.session_state['history']:
|
37 |
if i is not None:
|
38 |
previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
st.session_state['history'].append((query, result))
|
42 |
return result
|
43 |
|
@@ -54,6 +60,25 @@ if 'generated' not in st.session_state:
|
|
54 |
if 'past' not in st.session_state:
|
55 |
st.session_state['past'] = [" "]
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Create containers for chat history and user input
|
58 |
response_container = st.container()
|
59 |
container = st.container()
|
@@ -66,11 +91,12 @@ with container:
|
|
66 |
# answer = response_generator(output)
|
67 |
st.session_state['past'].append(user_input)
|
68 |
st.session_state['generated'].append(output)
|
69 |
-
|
|
|
70 |
# Display chat history
|
71 |
if st.session_state['generated']:
|
72 |
with response_container:
|
73 |
for i in range(len(st.session_state['generated'])):
|
74 |
if i != 0:
|
75 |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
|
76 |
-
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts")
|
|
|
|
|
1 |
import os
|
2 |
+
import streamlit as st
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
+
from langchain import LLMChain
|
5 |
from streamlit_chat import message
|
6 |
import google.generativeai as genai
|
7 |
from langchain.prompts import PromptTemplate
|
|
|
8 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
|
10 |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
|
|
15 |
|
16 |
|
17 |
template = """You are a friendly chat assistant called "CRETA" having a conversation with a human and you are created by Pachaiappan an AI Specialist.
|
18 |
+
provided document:
|
19 |
+
{provided_docs}
|
20 |
previous_chat:
|
21 |
{chat_history}
|
22 |
Human: {human_input}
|
23 |
Chatbot:"""
|
24 |
|
25 |
prompt = PromptTemplate(
|
26 |
+
input_variables=["chat_history", "human_input", "provided_docs"], template=template
|
27 |
)
|
28 |
|
29 |
llm_chain = LLMChain(
|
|
|
34 |
|
35 |
|
36 |
previous_response = ""
|
37 |
+
provided_docs = ""
|
38 |
def conversational_chat(query):
|
39 |
+
global previous_response, provided_docs
|
40 |
for i in st.session_state['history']:
|
41 |
if i is not None:
|
42 |
previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
|
43 |
+
for j in st.session_state["docs"]:
|
44 |
+
if j is not None:
|
45 |
+
provided_docs += j
|
46 |
+
result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs)
|
47 |
st.session_state['history'].append((query, result))
|
48 |
return result
|
49 |
|
|
|
60 |
if 'past' not in st.session_state:
|
61 |
st.session_state['past'] = [" "]
|
62 |
|
63 |
+
if 'docs' not in st.session_state:
|
64 |
+
st.session_state['docs'] = []
|
65 |
+
|
66 |
+
def get_pdf_text(pdf_docs):
|
67 |
+
text = ""
|
68 |
+
for pdf in pdf_docs:
|
69 |
+
pdf_reader = PdfReader(pdf)
|
70 |
+
for page in pdf_reader.pages:
|
71 |
+
text += page.extract_text()
|
72 |
+
return text
|
73 |
+
|
74 |
+
with st.sidebar:
|
75 |
+
st.title("Add a file for CRETA memory:")
|
76 |
+
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
|
77 |
+
if st.button("Submit & Process"):
|
78 |
+
with st.spinner("Processing..."):
|
79 |
+
st.session_state["docs"] += get_pdf_text(uploaded_file)
|
80 |
+
st.success("Done")
|
81 |
+
|
82 |
# Create containers for chat history and user input
|
83 |
response_container = st.container()
|
84 |
container = st.container()
|
|
|
91 |
# answer = response_generator(output)
|
92 |
st.session_state['past'].append(user_input)
|
93 |
st.session_state['generated'].append(output)
|
94 |
+
|
95 |
+
|
96 |
# Display chat history
|
97 |
if st.session_state['generated']:
|
98 |
with response_container:
|
99 |
for i in range(len(st.session_state['generated'])):
|
100 |
if i != 0:
|
101 |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
|
102 |
+
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts")
|