Spaces:
Running
Running
File size: 14,016 Bytes
a1c6194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# server.py
import uvicorn
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import numpy as np
from fastapi.middleware.cors import CORSMiddleware
import tensorflow as tf
from PIL import Image
from io import BytesIO
from fastapi import Request
# Initializing The App
app = FastAPI()
# Secure Our APP Server
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mounting
app.mount("/static", StaticFiles(directory="frontend/static"), name="static")
app.mount("/models/yoga_pose/static", StaticFiles(directory='models/yoga_pose/static'), name='static_yoga_pose')
app.mount("/models/weather/static", StaticFiles(directory='models/weather/static'), name='static_weather')
app.mount("/models/sports_ball/static", StaticFiles(directory='models/sports_ball/static'), name='static_sports_ball')
app.mount("/models/mammals/static", StaticFiles(directory='models/mammals/static'), name='static_mammals')
app.mount("/models/flower/static", StaticFiles(directory='models/flower/static'), name='static_flower')
app.mount("/models/card/static", StaticFiles(directory='models/card/static'), name='static_card')
app.mount("/models/dog_breed/static", StaticFiles(directory='models/dog_breed/static'), name='static_dog_breed')
app.mount("/models/chess/static", StaticFiles(directory='models/chess/static'), name='static_chess')
app.mount("/models/bird/static", StaticFiles(directory='models/bird/static'), name='static_bird')
# templates
templates = Jinja2Templates(directory="frontend")
templates1 = Jinja2Templates(directory="models")
# DL or Ml Models (Loading)..
sports_ball_model = tf.keras.models.load_model('models/sports_ball/Sports_ball_prediction_v2.h5')
weather_model = tf.keras.models.load_model('models/weather/weather_prediction_v2.h5')
flower_model = tf.keras.models.load_model('models/flower/flower_prediction.h5')
yoga_pose_model = tf.keras.models.load_model('models/yoga_pose/yoga-modelv2.h5')
mammals_model = tf.keras.models.load_model('models/mammals/Mammals_predictionv1.h5')
card_model = tf.keras.models.load_model('models/card/card_model_v2.h5')
dog_breed_model = tf.keras.models.load_model("models/dog_breed/dog_breedv3.h5")
chess_model = tf.keras.models.load_model("models/chess/chess_prediction_v4.h5")
bird_model = tf.keras.models.load_model("models/bird/bird_modelV2.h5")
# classes For All Models
yoga_class = ['Bridge Pose', 'Child-Pose', 'CobraPose',
'Downward Dog pose', 'Pigeon pose', 'Standing Mountain Pose',
'Tree Pose', 'Triangle Pose', 'Warrior Pose']
sports_ball_class = ['american_football', 'baseball', 'basketball', 'billiard_ball', 'bowling_ball', 'cricket_ball',
'football', 'golf_ball', 'hockey_ball', 'hockey_puck', 'rugby_ball', 'shuttlecock',
'table_tennis_ball', 'tennis_ball', 'volleyball']
flower_class = ['astilbe', 'bellflower', 'black_eyed_susan', 'calendula', 'california_poppy', 'carnation',
'common_daisy', 'coreopsis', 'dandelion', 'iris', 'rose', 'sunflower', 'tulip', 'water_lily']
mammals_class = ['african_elephant', 'alpaca', 'american_bison', 'anteater', 'arctic_fox', 'armadillo', 'baboon',
'badger', 'blue_whale', 'brown_bear', 'camel', 'dolphin', 'giraffe', 'groundhog', 'highland_cattle',
'horse', 'jackal', 'kangaroo', 'koala', 'manatee', 'mongoose', 'mountain_goat', 'opossum', 'orangutan',
'otter', 'polar_bear', 'porcupine', 'red_panda', 'rhinoceros', 'sea_lion', 'seal', 'snow_leopard',
'squirrel', 'sugar_glider', 'tapir', 'vampire_bat', 'vicuna', 'walrus', 'warthog', 'water_buffalo',
'weasel', 'wildebeest', 'wombat', 'yak', 'zebra']
cards_class = ['ace of clubs', 'ace of diamonds', 'ace of hearts', 'ace of spades', 'eight of clubs',
'eight of diamonds', 'eight of hearts', 'eight of spades', 'five of clubs', 'five of diamonds',
'five of hearts', 'five of spades', 'four of clubs', 'four of diamonds', 'four of hearts',
'four of spades', 'jack of clubs', 'jack of diamonds', 'jack of hearts', 'jack of spades', 'joker',
'king of clubs', 'king of diamonds', 'king of hearts', 'king of spades', 'nine of clubs',
'nine of diamonds', 'nine of hearts', 'nine of spades', 'queen of clubs', 'queen of diamonds',
'queen of hearts', 'queen of spades', 'seven of clubs', 'seven of diamonds', 'seven of hearts',
'seven of spades', 'six of clubs', 'six of diamonds', 'six of hearts', 'six of spades', 'ten of clubs',
'ten of diamonds', 'ten of hearts', 'ten of spades', 'three of clubs', 'three of diamonds',
'three of hearts', 'three of spades', 'two of clubs', 'two of diamonds', 'two of hearts',
'two of spades']
weather_class = ['dew', 'fogsmog', 'frost', 'glaze', 'hail', 'lightning', 'rain', 'rainbow', 'rime', 'sandstorm',
'snow']
dog_breed_class = ['Afghan','African Wild Dog', 'Airedale', 'American Hairless','American Spaniel', 'Basenji', 'Basset',
'Beagle', 'Bearded Collie', 'Bermaise', 'Bichon Frise', 'Blenheim', 'Bloodhound', 'Bluetick',
'Border Collie','Borzoi','Boston Terrier', 'Boxer', 'Bull Mastiff', 'Bull Terrier', 'Bulldog',
'Cairn', 'Chihuahua', 'Chinese Crested','Chow', 'Clumber','Cockapoo', 'Cocker', 'Collie', 'Corgi',
'Coyote', 'Dalmation', 'Dhole', 'Dingo', 'Doberman', 'Elk Hound', 'French Bulldog', 'German Sheperd',
'Golden Retriever', 'Great Dane', 'Great Perenees', 'Greyhound', 'Groenendael', 'Irish Spaniel',
'Irish Wolfhound', 'Japanese Spaniel', 'Komondor', 'Labradoodle', 'Labrador', 'Lhasa', 'Malinois',
'Maltese', 'Mex Hairless', 'Newfoundland', 'Pekinese', 'Pit Bull', 'Pomeranian', 'Poodle', 'Pug',
'Rhodesian', 'Rottweiler', 'Saint Bernard', 'Schnauzer', 'Scotch Terrier', 'Shar_Pei', 'Shiba Inu',
'Shih-Tzu', 'Siberian Husky', 'Vizsla', 'Yorkie']
chess_class = ['Bishop', 'King', 'Knight', 'Pawn', 'Queen', 'Rook']
bird_class = ['Asian-Green-Bee-Eater', 'Brown-Headed-Barbet', 'Cattle-Egret', 'Common-Kingfisher', 'Common-Myna',
'Common-Rosefinch', 'Common-Tailorbird', 'Coppersmith-Barbet', 'Forest-Wagtail', 'Gray-Wagtail', 'Hoopoe',
'House-Crow', 'Indian-Grey-Hornbill', 'Indian-Peacock', 'Indian-Pitta', 'Indian-Roller', 'Jungle-Babbler',
'Northern-Lapwing', 'Red-Wattled-Lapwing', 'Ruddy-Shelduck', 'Rufous-Treepie', 'Sarus-Crane',
'White-Breasted-Kingfisher', 'White-Breasted-Waterhen', 'White-Wagtail']
# HTML Responses
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("main.html", {"request": request})
@app.get("/models/yoga_pose/yoga_pose.html", response_class=HTMLResponse)
async def read_yoga_pose(request: Request):
return templates1.TemplateResponse("yoga_pose/yoga_pose.html", {"request": request})
@app.get("/models/weather/weather.html", response_class=HTMLResponse)
async def read_weather(request: Request):
return templates1.TemplateResponse("weather/weather.html", {"request": request})
@app.get("/models/sports_ball/sports_ball.html", response_class=HTMLResponse)
async def read_sports_ball(request: Request):
return templates1.TemplateResponse("sports_ball/sports_ball.html", {"request": request})
@app.get("/models/mammals/mammals.html", response_class=HTMLResponse)
async def read_mammals(request: Request):
return templates1.TemplateResponse("mammals/mammals.html", {"request": request})
@app.get("/models/flower/flower.html", response_class=HTMLResponse)
async def read_flower(request: Request):
return templates1.TemplateResponse("flower/flower.html", {"request": request})
@app.get("/models/card/card.html", response_class=HTMLResponse)
async def read_card(request: Request):
return templates1.TemplateResponse("card/card.html", {"request": request})
@app.get("/models/dog_breed/dog_breed.html", response_class=HTMLResponse)
async def read_dog_breed(request: Request):
return templates1.TemplateResponse("dog_breed/dog_breed.html", {"request": request})
@app.get("/models/chess/chess.html", response_class=HTMLResponse)
async def read_chess(request: Request):
return templates1.TemplateResponse("chess/chess.html", {"request": request})
@app.get("/models/bird/bird.html", response_class=HTMLResponse)
async def read_bird(request: Request):
return templates1.TemplateResponse("bird/bird.html", {"request": request})
# Function Converting Img --> Array
def read_file_as_image(data):
img = Image.open(BytesIO(data)).resize((224, 224))
img_array = tf.keras.preprocessing.image.img_to_array(img)
return img_array
# Endpoint for Sports Ball Model
@app.post("/predict_sports_ball")
async def predict_sports_ball(file: UploadFile = File(...)):
print("Sports Ball Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = sports_ball_model.predict(img)
result = sports_ball_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# EndPoint For Flower Model
@app.post("/predict_flower")
async def predict_flower(file: UploadFile = File(...)):
print("Flower Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = flower_model.predict(img)
result = flower_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for Weather Model
@app.post("/predict_weather")
async def weather(file: UploadFile = File(...)):
print("Weather Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = weather_model.predict(img)
result = weather_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for Yoga Pose Model
@app.post("/predict_yoga_pose")
async def predict_yoga_pose(file: UploadFile = File(...)):
print("Yoga Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = yoga_pose_model.predict(img)
result = yoga_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for Mammals Model
@app.post("/predict_mammals")
async def predict_mammals(file: UploadFile = File(...)):
print("Mammals Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = mammals_model.predict(img)
result = mammals_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for card Model
@app.post("/predict_card")
async def predict_card(file: UploadFile = File(...)):
print("card Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = card_model.predict(img)
result = cards_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for Dog Breed Model
@app.post("/predict_dog_breed")
async def predict_dog_breed(file: UploadFile = File(...)):
print("Dog Breed Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = dog_breed_model.predict(img)
result = dog_breed_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for chess Model
@app.post("/predict_chess")
async def predict_chess(file: UploadFile = File(...)):
print("Chess Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = chess_model.predict(img)
result = chess_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Endpoint for bird Model
@app.post("/predict_bird")
async def predict_bird(file: UploadFile = File(...)):
print("bird Prediction endpoint called")
file.file.seek(0)
img = read_file_as_image(await file.read())
img = np.expand_dims(img, axis=0)
predicted = bird_model.predict(img)
result = bird_class[np.argmax(predicted[0])]
confidence = np.max(predicted[0])
return {
'class': result,
'confidence': round(confidence * 100, 1)
}
# Run The Server In Localhost via Uvicorn
if __name__ == '__main__':
uvicorn.run(app, host='localhost', port=8000)
|