from flask import Flask, request, jsonify from huggingface_hub import InferenceClient app = Flask(__name__) app.config["DEBUG"] = True # Enable for debugging # Load model client client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Function for text generation with enhanced prompt formatting def generate( prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0 ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # Enhanced prompt formatting for better context formatted_prompt = f"{system_prompt}\n{', '.join(f'{user_prompt} ||| {bot_response}' for user_prompt, bot_response in history)}\n{prompt}" stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text return output @app.route("/generate", methods=["POST"]) def generate_text(): data = request.json prompt = data.get("prompt") history = data.get("history", []) system_prompt = data.get("system_prompt") temperature = data.get("temperature", 0.9) max_new_tokens = data.get("max_new_tokens", 256) top_p = data.get("top_p", 0.95) repetition_penalty = data.get("repetition_penalty", 1.0) response = generate( prompt, history, system_prompt, temperature, max_new_tokens, top_p, repetition_penalty ) return jsonify({"response": response}) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)