import streamlit as st from transformers import pipeline @st.cache(allow_output_mutation=True) def load_summarizer(): summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-16384-booksum-V11-big_patent-V2") return summarizer summarize = load_summarizer() st.title("Patent Text Summarizer") sentence = st.text_area('Please paste your Patent Text :', height=300) button = st.button("Summarize") #max = st.sidebar.slider('Select max', 50, 500, step=10, value=500) #min = st.sidebar.slider('Select min', 10, 100, step=10, value=100) #do_sample = st.sidebar.checkbox("Do sample", value=False) with st.spinner("Generating Patent Summary.."): if button and sentence: #chunks = generate_chunks(sentence) res = summarize(sentence, max_length=200, min_length=100, truncation=True, #do_sample=do_sample ) text = ' '.join([summ['summary_text'] for summ in res]) # st.write(result[0]['summary_text']) st.write(text)