Spaces:
Sleeping
Sleeping
import logging | |
from typing import cast | |
from threading import Lock | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from conversation import get_default_conv_template | |
import gradio as gr | |
talkers = { | |
"m3b": { | |
"tokenizer": AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False), | |
"model": AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", device_map="auto", low_cpu_mem_usage=True), | |
"conv": get_default_conv_template("minichat") | |
} | |
} | |
def m3b_talk(text): | |
m3bconv = talkers["m3b"]["conv"] | |
m3bconv.append_message(m3bconv.roles[0], text) | |
m3bconv.append_message(m3bconv.roles[1], None) | |
input_ids = talkers["m3b"]["tokenizer"]([text]).input_ids | |
response_tokens = talkers["m3b"]["model"]( | |
torch.as_tensor(m3bconv.get_prompt()), | |
do_sample=True, | |
temperature=0.2, | |
max_new_tokens=1024, | |
) | |
response_tokens = response_tokens[0][len(input_ids[0]):] | |
response = talkers["m3b"]["tokenizer"].decode(response_tokens, skip_special_tokens=True).strip() | |
return response | |
def main(): | |
logging.basicConfig(level=logging.INFO) | |
with gr.Blocks() as demo: | |
with gr.Row(variant="panel"): | |
gr.Markdown("## Talk to MiniChat-3B\n\nTalk to MiniChat-3B.") | |
with gr.Row(variant="panel"): | |
with gr.Column(variant="panel"): | |
m3b_talk_input = gr.Textbox(label="Message", placeholder="Type something here...") | |
with gr.Column(variant="panel"): | |
m3b_talk_output = gr.Textbox() | |
m3b_talk_btn = gr.Button("Send") | |
m3b_talk_btn.click(m3b_talk, inputs=m3b_talk_input, outputs=m3b_talk_output, api_name="talk_m3b") | |
demo.queue(concurrency_count=1).launch() | |
if __name__ == "__main__": | |
main() | |