Spaces:
Sleeping
Sleeping
# impoprt packages | |
import torch | |
import requests | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, pipeline | |
import sentencepiece | |
import gradio as gr | |
# Image captioning model | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
# Translate en to ar | |
model_translater = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ar") | |
# conditional image captioning (with prefix-) | |
def image_captioning(image, prefix="a "): | |
""" Return text (As str) to describe an image """ | |
# Process the image | |
inputs = processor(image, prefix, return_tensors="pt") | |
# Generate text to describe the image | |
output = model.generate(**inputs) | |
# Decode the output | |
output = processor.decode(output[0], skip_special_tokens=True, max_length=80) | |
return output | |
def translate_text(text, to="ar"): | |
""" Return translated text """ | |
translated_text = model_translater(str(text)) | |
return translated_text[0]['translation_text'] | |
def image_captioning_ar(image, prefix = "a "): | |
if image: | |
text = image_captioning(image, prefix=prefix) | |
return text, translate_text(text) | |
return null | |
input_image = gr.inputs.Image(type="pil", label = 'Upload your image') | |
imageCaptioning_interface = gr.Interface( | |
fn = image_captioning_ar, | |
inputs=input_image, | |
outputs=[gr.outputs.Textbox(label="Caption (en)"), gr.outputs.Textbox(label="Caption (ar)")], | |
title = 'Image captioning', | |
) | |
imageCaptioning_interface.launch() |