Spaces:
Sleeping
Sleeping
File size: 16,810 Bytes
b29c0f7 ed8d8f8 b29c0f7 7e2e84e 673ab5a 7e2e84e 673ab5a b29c0f7 ed8d8f8 b29c0f7 673ab5a b29c0f7 2ece4c8 b29c0f7 7e2e84e 673ab5a ed8d8f8 b29c0f7 673ab5a b29c0f7 673ab5a b29c0f7 2ece4c8 b29c0f7 e7f4a17 b29c0f7 7e2e84e b29c0f7 8bd4ebb b29c0f7 b8807d1 b29c0f7 8bd4ebb b8807d1 b29c0f7 8bd4ebb b29c0f7 b8807d1 b29c0f7 b8807d1 b29c0f7 b8807d1 b29c0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import re
import numpy as np
import json
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_distances
from langchain_google_genai import ChatGoogleGenerativeAI
import os
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
max_tokens = 3000
def clean_text(text):
text = re.sub(r'\[speaker_\d+\]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def split_text_with_modernbert_tokenizer(text):
text = clean_text(text)
rough_splits = re.split(r'(?<=[.!?])\s+', text)
segments = []
current_segment = ""
current_token_count = 0
for sentence in rough_splits:
if not sentence.strip():
continue
sentence_tokens = len(tokenizer.encode(sentence, add_special_tokens=False))
if (current_token_count + sentence_tokens > 100 or
re.search(r'[.!?]$', current_segment.strip())):
if current_segment:
segments.append(current_segment.strip())
current_segment = sentence
current_token_count = sentence_tokens
else:
current_segment += " " + sentence if current_segment else sentence
current_token_count += sentence_tokens
if current_segment:
segments.append(current_segment.strip())
refined_segments = []
for segment in segments:
if len(segment.split()) < 3:
if refined_segments:
refined_segments[-1] += ' ' + segment
else:
refined_segments.append(segment)
continue
tokens = tokenizer.tokenize(segment)
if len(tokens) < 50:
refined_segments.append(segment)
continue
break_indices = [i for i, token in enumerate(tokens)
if ('.' in token or ',' in token or '?' in token or '!' in token)
and i < len(tokens) - 1]
if not break_indices or break_indices[-1] < len(tokens) * 0.7:
refined_segments.append(segment)
continue
mid_idx = break_indices[len(break_indices) // 2]
first_half = tokenizer.convert_tokens_to_string(tokens[:mid_idx+1])
second_half = tokenizer.convert_tokens_to_string(tokens[mid_idx+1:])
refined_segments.append(first_half.strip())
refined_segments.append(second_half.strip())
return refined_segments
def semantic_chunking(text):
segments = split_text_with_modernbert_tokenizer(text)
segment_embeddings = sentence_model.encode(segments)
distances = cosine_distances(segment_embeddings)
agg_clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=1,
metric='precomputed',
linkage='average'
)
clusters = agg_clustering.fit_predict(distances)
# Group segments by cluster
cluster_groups = {}
for i, cluster_id in enumerate(clusters):
if cluster_id not in cluster_groups:
cluster_groups[cluster_id] = []
cluster_groups[cluster_id].append(segments[i])
chunks = []
for cluster_id in sorted(cluster_groups.keys()):
cluster_segments = cluster_groups[cluster_id]
current_chunk = []
current_token_count = 0
for segment in cluster_segments:
segment_tokens = len(tokenizer.encode(segment, truncation=True, add_special_tokens=True))
if segment_tokens > max_tokens:
if current_chunk:
chunks.append(" ".join(current_chunk))
current_chunk = []
current_token_count = 0
chunks.append(segment)
continue
if current_token_count + segment_tokens > max_tokens and current_chunk:
chunks.append(" ".join(current_chunk))
current_chunk = [segment]
current_token_count = segment_tokens
else:
current_chunk.append(segment)
current_token_count += segment_tokens
if current_chunk:
chunks.append(" ".join(current_chunk))
if len(chunks) > 1:
chunk_embeddings = sentence_model.encode(chunks)
chunk_similarities = 1 - cosine_distances(chunk_embeddings)
i = 0
while i < len(chunks) - 1:
j = i + 1
if chunk_similarities[i, j] > 0.75:
combined = chunks[i] + " " + chunks[j]
combined_tokens = len(tokenizer.encode(combined, truncation=True, add_special_tokens=True))
if combined_tokens <= max_tokens:
# Merge chunks
chunks[i] = combined
chunks.pop(j)
chunk_embeddings = sentence_model.encode(chunks)
chunk_similarities = 1 - cosine_distances(chunk_embeddings)
else:
i += 1
else:
i += 1
return chunks
def analyze_segment_with_gemini(cluster_text, is_full_text=False):
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0.7,
max_tokens=None,
timeout=None,
max_retries=3
)
if is_full_text:
prompt = f"""
FIRST ASSESS THE TEXT:
- Check if it's primarily self-introduction, biographical information, or conclusion
- Check if it's too short or lacks meaningful content (less than 100 words of substance)
- If either case is true, respond with a simple JSON: {{"status": "insufficient", "reason": "Brief explanation"}}
Analyze the following text (likely a transcript or document) and:
1. First, do text segmentation and identify DISTINCT key topics within the text
2. For each segment/topic you identify:
- Provide a SPECIFIC and UNIQUE topic name (3-5 words) that clearly differentiates it from other segments
- List 3-5 key concepts discussed in that segment
- Write a brief summary of that segment (3-5 sentences)
- Create 5 quiz questions based DIRECTLY on the content in that segment
For each quiz question:
- Create one correct answer that comes DIRECTLY from the text
- Create two plausible but incorrect answers
- IMPORTANT: Ensure all answer options have similar length (± 3 words)
- Ensure the correct answer is clearly indicated
Text:
{cluster_text}
Format your response as JSON with the following structure:
{{
"segments": [
{{
"topic_name": "Name of segment 1",
"key_concepts": ["concept1", "concept2", "concept3"],
"summary": "Brief summary of this segment.",
"quiz_questions": [
{{
"question": "Question text?",
"options": [
{{
"text": "Option A",
"correct": false
}},
{{
"text": "Option B",
"correct": true
}},
{{
"text": "Option C",
"correct": false
}}
]
}},
// More questions...
]
}},
// More segments...
]
}}
OR if the text is just introductory, concluding, or insufficient:
{{
"status": "insufficient",
"reason": "Brief explanation of why (e.g., 'Text is primarily self-introduction', 'Text is too short', etc.)"
}}
"""
else:
prompt = f"""
FIRST ASSESS THE TEXT:
- Check if it's primarily self-introduction, biographical information, or conclusion
- Check if it's too short or lacks meaningful content (less than 100 words of substance)
- If either case is true, respond with a simple JSON: {{"status": "insufficient", "reason": "Brief explanation"}}
Analyze the following text segment and provide:
1. A SPECIFIC and DESCRIPTIVE topic name (3-5 words) that precisely captures the main focus
2. 3-5 key concepts discussed
3. A brief summary (6-7 sentences)
4. Create 5 quiz questions based DIRECTLY on the text content (not from your summary)
For each quiz question:
- Create one correct answer that comes DIRECTLY from the text
- Create two plausible but incorrect answers
- IMPORTANT and STRICTLY: Ensure all answer options have similar length (± 3 words)
- Ensure the correct answer is clearly indicated
Text segment:
{cluster_text}
Format your response as JSON with the following structure:
{{
"topic_name": "Name of the topic",
"key_concepts": ["concept1", "concept2", "concept3"],
"summary": "Brief summary of the text segment.",
"quiz_questions": [
{{
"question": "Question text?",
"options": [
{{
"text": "Option A",
"correct": false
}},
{{
"text": "Option B",
"correct": true
}},
{{
"text": "Option C",
"correct": false
}}
]
}},
// More questions...
]
}}
OR if the text is just introductory, concluding, or insufficient:
{{
"status": "insufficient",
"reason": "Brief explanation of why (e.g., 'Text is primarily self-introduction', 'Text is too short', etc.)"
}}
"""
response = llm.invoke(prompt)
response_text = response.content
try:
json_match = re.search(r'\{[\s\S]*\}', response_text)
if json_match:
response_json = json.loads(json_match.group(0))
else:
response_json = json.loads(response_text)
return response_json
except json.JSONDecodeError as e:
print(f"Error parsing JSON response: {e}")
print(f"Raw response: {response_text}")
if is_full_text:
return {
"segments": [
{
"topic_name": "JSON Parsing Error",
"key_concepts": ["Error in response format"],
"summary": f"Could not parse the API response. Raw text: {response_text[:200]}...",
"quiz_questions": []
}
]
}
else:
return {
"topic_name": "JSON Parsing Error",
"key_concepts": ["Error in response format"],
"summary": f"Could not parse the API response. Raw text: {response_text[:200]}...",
"quiz_questions": []
}
def process_document_with_quiz(text):
token_count = len(tokenizer.encode(text))
print(f"Text contains {token_count} tokens")
if token_count < 8000:
print("Text is short enough to analyze directly without text segmentation")
full_analysis = analyze_segment_with_gemini(text, is_full_text=True)
results = []
if "segments" in full_analysis:
for i, segment in enumerate(full_analysis["segments"]):
segment["segment_number"] = i + 1
segment["segment_text"] = "Segment identified by Gemini"
results.append(segment)
print(f"Gemini identified {len(results)} segments in the text")
else:
print("Unexpected response format from Gemini")
results = [full_analysis]
return results
chunks = semantic_chunking(text)
print(f"{len(chunks)} semantic chunks were found\n")
results = []
for i, chunk in enumerate(chunks):
print(f"Analyzing segment {i+1}/{len(chunks)}...")
analysis = analyze_segment_with_gemini(chunk, is_full_text=False)
analysis["segment_number"] = i + 1
analysis["segment_text"] = chunk
results.append(analysis)
print(f"Completed analysis of segment {i+1}: {analysis['topic_name']}")
return results
def save_results_to_file(results, output_file="analysis_results.json"):
with open(output_file, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Results saved to {output_file}")
def format_quiz_for_display(results):
output = []
for segment_result in results:
segment_num = segment_result["segment_number"]
topic = segment_result["topic_name"]
output.append(f"\n\n{'='*40}")
output.append(f"SEGMENT {segment_num}: {topic}")
output.append(f"{'='*40}\n")
output.append("KEY CONCEPTS:")
for concept in segment_result["key_concepts"]:
output.append(f"• {concept}")
output.append("\nSUMMARY:")
output.append(segment_result["summary"])
output.append("\nQUIZ QUESTIONS:")
for i, q in enumerate(segment_result["quiz_questions"]):
output.append(f"\n{i+1}. {q['question']}")
for j, option in enumerate(q['options']):
letter = chr(97 + j).upper()
correct_marker = " ✓" if option["correct"] else ""
output.append(f" {letter}. {option['text']}{correct_marker}")
return "\n".join(output)
def analyze_document(document_text: str, api_key: str) -> tuple:
os.environ["GOOGLE_API_KEY"] = api_key
try:
results = process_document_with_quiz(document_text)
formatted_output = format_quiz_for_display(results)
json_path = "analysis_results.json"
txt_path = "analysis_results.txt"
with open(json_path, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
with open(txt_path, "w", encoding="utf-8") as f:
f.write(formatted_output)
return formatted_output, json_path, txt_path
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
return error_msg, None, None
with gr.Blocks(title="Quiz Generator") as app:
gr.Markdown("# Quiz Generator")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
placeholder="Paste your document text here...",
lines=10
)
api_key = gr.Textbox(
label="Gemini API Key",
placeholder="Enter your Gemini API key",
type="password"
)
analyze_btn = gr.Button("Analyze Document")
with gr.Column():
output_results = gr.Textbox(
label="Analysis Results",
lines=20
)
json_file_output = gr.File(label="Download JSON")
txt_file_output = gr.File(label="Download TXT")
analyze_btn.click(
fn=analyze_document,
inputs=[input_text, api_key],
outputs=[output_results, json_file_output, txt_file_output]
)
if __name__ == "__main__":
app.launch() |