Spaces:
Sleeping
Sleeping
File size: 11,798 Bytes
b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a 7021e3d fadb17a 7021e3d fadb17a 7021e3d 88a62c0 7021e3d fadb17a 7021e3d fadb17a 7021e3d fadb17a 7021e3d fadb17a e7f4a17 fadb17a e7f4a17 fadb17a e7f4a17 fadb17a e7f4a17 b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b8807d1 fadb17a b8807d1 fadb17a b8807d1 fadb17a 9c57d14 fadb17a 9c57d14 fadb17a 9c57d14 fadb17a b8807d1 b29c0f7 8bd4ebb fadb17a b8807d1 b29c0f7 8bd4ebb b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 fadb17a b29c0f7 b8807d1 b29c0f7 b8807d1 b29c0f7 b8807d1 b29c0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import re
import numpy as np
import json
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
from langchain_google_genai import ChatGoogleGenerativeAI
import os
import gradio as gr
import time
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
def clean_text(text):
text = re.sub(r'\[speaker_\d+\]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def split_text_by_tokens(text, max_tokens=8000):
text = clean_text(text)
tokens = tokenizer.encode(text)
if len(tokens) <= max_tokens:
return [text]
split_point = len(tokens) // 2
sentences = re.split(r'(?<=[.!?])\s+', text)
first_half = []
second_half = []
current_tokens = 0
for sentence in sentences:
sentence_tokens = len(tokenizer.encode(sentence))
if current_tokens + sentence_tokens <= split_point:
first_half.append(sentence)
current_tokens += sentence_tokens
else:
second_half.append(sentence)
return [" ".join(first_half), " ".join(second_half)]
def analyze_segment_with_gemini(segment_text):
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0.7,
max_tokens=None,
timeout=None,
max_retries=3
)
prompt = f"""
Analyze the following text and identify distinct segments within it and do text segmentation:
1. Segments should be STRICTLY max=15
2. For each segment/topic you identify:
- Provide a SPECIFIC and UNIQUE topic name (3-5 words) that clearly differentiates it from other segments
- List 3-5 key concepts discussed in that segment (be precise and avoid repetition between segments)
- Write a brief summary of that segment (3-5 sentences)
- Create 5 high-quality, meaningful quiz questions based DIRECTLY on the content in that segment only
- Questions and answers should be only from the content of the segment
For each quiz question:
- Create one correct answer that comes DIRECTLY from the text
- Create two plausible but incorrect answers
- IMPORTANT: Ensure all answer options have similar length (± 3 words)
- Ensure the correct answer is clearly indicated with a ✓ symbol
- Questions should **require actual understanding**, NOT just basic fact recall.
- Questions Are **non-trivial**, encourage deeper thinking, and **avoid surface-level facts**.
- Are **directly based on the segment's content** (not inferred from the summary).
- Do **not include questions about document structure** (e.g., title, number of paragraphs).
- Do **not generate overly generic or obvious questions** (e.g., "What is mentioned in the text?").
- Focus on **core ideas, logical reasoning, and conceptual understanding**.
ADDITIONAL REQUIREMENT:
- **First, detect the language of the original text.**
- **Generate ALL output (topic names, key concepts, summaries, and quizzes) in the same language as the original text.**
- If the text is in Russian, generate all responses in Russian.
- If the text is in another language, generate responses in that original language.
Text:
{segment_text}
Format your response as JSON with the following structure:
{{
"segments": [
{{
"topic_name": "Unique and Specific Topic Name",
"key_concepts": ["concept1", "concept2", "concept3"],
"summary": "Brief summary of this segment.",
"quiz_questions": [
{{
"question": "Question text?",
"options": [
{{
"text": "Option A",
"correct": false
}},
{{
"text": "Option B",
"correct": true
}},
{{
"text": "Option C",
"correct": false
}}
]
}}
]
}}
]
}}
IMPORTANT: Each segment must have a DISTINCT topic name that clearly differentiates it from others.
- **Do NOT repeat** key concepts across multiple segments unless absolutely necessary.
- **Ensure the quiz questions challenge the reader** and **are not easily guessable**.
"""
response = llm.invoke(prompt)
response_text = response.content
try:
json_match = re.search(r'\{[\s\S]*\}', response_text)
if json_match:
return json.loads(json_match.group(0))
else:
return json.loads(response_text)
except json.JSONDecodeError:
return {
"segments": [
{
"topic_name": "JSON Parsing Error",
"key_concepts": ["Error in response format"],
"summary": "Could not parse the API response.",
"quiz_questions": []
}
]
}
def process_document_with_quiz(text):
start_time = time.time()
token_count = len(tokenizer.encode(text))
print(f"[LOG] Total document tokens: {token_count}")
if token_count > 8000:
print(f"[LOG] Document exceeds 8000 tokens. Splitting into parts.")
parts = split_text_by_tokens(text)
print(f"[LOG] Document split into {len(parts)} parts")
for i, part in enumerate(parts):
part_tokens = len(tokenizer.encode(part))
print(f"[LOG] Part {i+1} contains {part_tokens} tokens")
else:
print(f"[LOG] Document under 8000 tokens. Processing as a single part.")
parts = [text]
all_segments = []
segment_counter = 1
for i, part in enumerate(parts):
part_start_time = time.time()
print(f"[LOG] Processing part {i+1}...")
analysis = analyze_segment_with_gemini(part)
if "segments" in analysis:
print(f"[LOG] Found {len(analysis['segments'])} segments in part {i+1}")
for segment in analysis["segments"]:
segment["segment_number"] = segment_counter
all_segments.append(segment)
print(f"[LOG] Segment {segment_counter}: {segment['topic_name']}")
segment_counter += 1
else:
# Fallback if response format is unexpected
print(f"[LOG] Error: Unexpected format in part {i+1} analysis")
fallback_segment = {
"topic_name": f"Segment {segment_counter} Analysis",
"key_concepts": ["Format error in analysis"],
"summary": "Could not properly segment this part of the text.",
"quiz_questions": [],
"segment_number": segment_counter
}
all_segments.append(fallback_segment)
print(f"[LOG] Added fallback segment {segment_counter}")
segment_counter += 1
part_time = time.time() - part_start_time
print(f"[LOG] Part {i+1} processed in {part_time:.2f} seconds")
total_time = time.time() - start_time
print(f"[LOG] Total processing time: {total_time:.2f} seconds")
print(f"[LOG] Generated {len(all_segments)} segments total")
return all_segments
def format_quiz_for_display(results):
output = []
for segment in results:
topic = segment["topic_name"]
segment_num = segment["segment_number"]
output.append(f"\n\n{'='*40}")
output.append(f"SEGMENT {segment_num}: {topic}")
output.append(f"{'='*40}\n")
output.append("KEY CONCEPTS:")
for concept in segment["key_concepts"]:
output.append(f"• {concept}")
output.append("\nSUMMARY:")
output.append(segment["summary"])
output.append("\nQUIZ QUESTIONS:")
for i, q in enumerate(segment["quiz_questions"]):
output.append(f"\n{i+1}. {q['question']}")
for j, option in enumerate(q['options']):
letter = chr(97 + j).upper()
correct_marker = " ✓" if option["correct"] else ""
output.append(f" {letter}. {option['text']}{correct_marker}")
return "\n".join(output)
def save_results_as_json(results, filename="analysis_results.json"):
with open(filename, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
return filename
def save_results_as_txt(formatted_text, filename="analysis_results.txt"):
with open(filename, "w", encoding="utf-8") as f:
f.write(formatted_text)
return filename
def analyze_document(document_text, api_key):
print(f"[LOG] Starting document analysis...")
overall_start_time = time.time()
os.environ["GOOGLE_API_KEY"] = api_key
try:
results = process_document_with_quiz(document_text)
formatted_output = format_quiz_for_display(results)
json_path = "analysis_results.json"
txt_path = "analysis_results.txt"
with open(json_path, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
with open(txt_path, "w", encoding="utf-8") as f:
f.write(formatted_output)
overall_time = time.time() - overall_start_time
print(f"[LOG] Document analysis completed in {overall_time:.2f} seconds")
topics_summary = "DOCUMENT ANALYSIS SUMMARY:\n"
topics_summary += f"Total segments: {len(results)}\n"
topics_summary += f"Processing time: {overall_time:.2f} seconds\n\n"
topics_summary += "SEGMENTS:\n"
for segment in results:
topics_summary += f"- Segment {segment['segment_number']}: {segment['topic_name']}\n"
formatted_output = topics_summary + "\n" + formatted_output
return formatted_output, json_path, txt_path
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
print(f"[LOG] ERROR: {error_msg}")
return error_msg, None, None
with gr.Blocks(title="Quiz Generator") as app:
gr.Markdown("# Quiz Generator")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Document Text",
placeholder="Paste your document text here...",
lines=10
)
api_key = gr.Textbox(
label="Gemini API Key",
placeholder="Enter your Gemini API key",
type="password"
)
analyze_btn = gr.Button("Analyze Document")
with gr.Column():
output_results = gr.Textbox(
label="Analysis Results",
lines=20
)
json_file_output = gr.File(label="Download JSON")
txt_file_output = gr.File(label="Download TXT")
analyze_btn.click(
fn=analyze_document,
inputs=[input_text, api_key],
outputs=[output_results, json_file_output, txt_file_output]
)
if __name__ == "__main__":
app.launch() |