QuizGenerator / app.py
MrSimple01's picture
Update app.py
a19f13a verified
raw
history blame
12.3 kB
import os
import re
import json
import time
import gradio as gr
import tempfile
from typing import Dict, Any, List, Optional
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from pydantic import BaseModel, Field
from anthropic import Anthropic
from huggingface_hub import login
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
OPENAI_MODEL = "gpt-4o"
GEMINI_MODEL = "gemini-2.0-flash"
DEFAULT_TEMPERATURE = 0.7
TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"
class CourseInfo(BaseModel):
course_name: str = Field(description="Name of the course")
section_name: str = Field(description="Name of the course section")
lesson_name: str = Field(description="Name of the lesson")
class QuizOption(BaseModel):
text: str = Field(description="The text of the answer option")
correct: bool = Field(description="Whether this option is correct")
class QuizQuestion(BaseModel):
question: str = Field(description="The text of the quiz question")
options: List[QuizOption] = Field(description="List of answer options")
class Segment(BaseModel):
segment_number: int = Field(description="The segment number")
topic_name: str = Field(description="Unique and specific topic name that clearly differentiates it from other segments")
key_concepts: List[str] = Field(description="3-5 key concepts discussed in the segment")
summary: str = Field(description="Brief summary of the segment (3-5 sentences)")
quiz_questions: List[QuizQuestion] = Field(description="5 quiz questions based on the segment content")
class TextSegmentAnalysis(BaseModel):
course_info: CourseInfo = Field(description="Information about the course")
segments: List[Segment] = Field(description="List of text segments with analysis")
hf_token = os.environ.get('HF_TOKEN', None)
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
# System prompt
system_prompt = """You are an expert educational content analyzer. Your task is to analyze text content,
identify distinct segments, and create high-quality educational quiz questions for each segment."""
def clean_text(text):
text = re.sub(r'\[speaker_\d+\]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def split_text_by_tokens(text, max_tokens=8000):
text = clean_text(text)
tokens = tokenizer.encode(text)
if len(tokens) <= max_tokens:
return [text]
split_point = len(tokens) // 2
sentences = re.split(r'(?<=[.!?])\s+', text)
first_half = []
second_half = []
current_tokens = 0
for sentence in sentences:
sentence_tokens = len(tokenizer.encode(sentence))
if current_tokens + sentence_tokens <= split_point:
first_half.append(sentence)
current_tokens += sentence_tokens
else:
second_half.append(sentence)
return [" ".join(first_half), " ".join(second_half)]
def generate_with_claude(text, api_key, course_name="", section_name="", lesson_name=""):
from prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_CLAUDE
client = Anthropic(api_key=api_key)
segment_analysis_schema = TextSegmentAnalysis.model_json_schema()
tools = [
{
"name": "build_segment_analysis",
"description": "Build the text segment analysis with quiz questions",
"input_schema": segment_analysis_schema
}
]
system_prompt = """You are a helpful assistant specialized in text analysis and educational content creation.
You analyze texts to identify distinct segments, create summaries, and generate quiz questions."""
prompt = prompt = ANALYSIS_PROMPT_TEMPLATE_CLAUDE.format(
course_name=course_name,
section_name=section_name,
lesson_name=lesson_name,
text=text
)
try:
response = client.messages.create(
model=CLAUDE_MODEL,
max_tokens=8192,
temperature=DEFAULT_TEMPERATURE,
system=system_prompt,
messages=[
{
"role": "user",
"content": prompt
}
],
tools=tools,
tool_choice={"type": "tool", "name": "build_segment_analysis"}
)
# Extract the tool call content
if response.content and len(response.content) > 0 and hasattr(response.content[0], 'input'):
function_call = response.content[0].input
return function_call
else:
raise Exception("No valid tool call found in the response")
except Exception as e:
raise Exception(f"Error calling Anthropic API: {str(e)}")
def get_llm_by_api_key(api_key):
if api_key.startswith("sk-ant-"): # Claude API key format
from langchain_anthropic import ChatAnthropic
return ChatAnthropic(
anthropic_api_key=api_key,
model_name=CLAUDE_MODEL,
temperature=DEFAULT_TEMPERATURE,
max_retries=3
)
elif api_key.startswith("sk-"): # OpenAI API key format
from langchain_openai import ChatOpenAI
return ChatOpenAI(
openai_api_key=api_key,
model_name=OPENAI_MODEL,
temperature=DEFAULT_TEMPERATURE,
max_retries=3
)
else: # Default to Gemini
from langchain_google_genai import ChatGoogleGenerativeAI
os.environ["GOOGLE_API_KEY"] = api_key
return ChatGoogleGenerativeAI(
model=GEMINI_MODEL,
temperature=DEFAULT_TEMPERATURE,
max_retries=3
)
def segment_and_analyze_text(text: str, api_key: str, course_name="", section_name="", lesson_name="") -> Dict[str, Any]:
from prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_GEMINI
if api_key.startswith("sk-ant-"):
return generate_with_claude(text, api_key, course_name, section_name, lesson_name)
# For other models, use LangChain
llm = get_llm_by_api_key(api_key)
prompt = ANALYSIS_PROMPT_TEMPLATE_GEMINI.format(
course_name=course_name,
section_name=section_name,
lesson_name=lesson_name,
text=text
)
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
response = llm.invoke(messages)
try:
content = response.content
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
if json_match:
json_str = json_match.group(1)
else:
json_match = re.search(r'(\{[\s\S]*\})', content)
if json_match:
json_str = json_match.group(1)
else:
json_str = content
# Parse the JSON
function_call = json.loads(json_str)
return function_call
except json.JSONDecodeError:
raise Exception("Could not parse JSON from LLM response")
except Exception as e:
raise Exception(f"Error calling API: {str(e)}")
def format_quiz_for_display(results):
output = []
if "course_info" in results:
course_info = results["course_info"]
output.append(f"{'='*40}")
output.append(f"COURSE: {course_info.get('course_name', 'N/A')}")
output.append(f"SECTION: {course_info.get('section_name', 'N/A')}")
output.append(f"LESSON: {course_info.get('lesson_name', 'N/A')}")
output.append(f"{'='*40}\n")
segments = results.get("segments", [])
for i, segment in enumerate(segments):
topic = segment["topic_name"]
segment_num = i + 1
output.append(f"\n\n{'='*40}")
output.append(f"SEGMENT {segment_num}: {topic}")
output.append(f"{'='*40}\n")
output.append("KEY CONCEPTS:")
for concept in segment["key_concepts"]:
output.append(f"• {concept}")
output.append("\nSUMMARY:")
output.append(segment["summary"])
output.append("\nQUIZ QUESTIONS:")
for i, q in enumerate(segment["quiz_questions"]):
output.append(f"\n{i+1}. {q['question']}")
for j, option in enumerate(q['options']):
letter = chr(97 + j).upper()
correct_marker = " ✓" if option["correct"] else ""
output.append(f" {letter}. {option['text']}{correct_marker}")
return "\n".join(output)
def analyze_document(text, api_key, course_name, section_name, lesson_name):
try:
start_time = time.time()
# Split text if it's too long
text_parts = split_text_by_tokens(text)
all_results = {
"course_info": {
"course_name": course_name,
"section_name": section_name,
"lesson_name": lesson_name
},
"segments": []
}
segment_counter = 1
# Process each part of the text
for part in text_parts:
analysis = segment_and_analyze_text(
part,
api_key,
course_name=course_name,
section_name=section_name,
lesson_name=lesson_name
)
if "segments" in analysis:
for segment in analysis["segments"]:
segment["segment_number"] = segment_counter
all_results["segments"].append(segment)
segment_counter += 1
end_time = time.time()
total_time = end_time - start_time
# Format the results for display
formatted_text = format_quiz_for_display(all_results)
formatted_text = f"Total processing time: {total_time:.2f} seconds\n\n" + formatted_text
# Create temporary files for JSON and text output
json_path = tempfile.mktemp(suffix='.json')
with open(json_path, 'w', encoding='utf-8') as json_file:
json.dump(all_results, json_file, indent=2)
txt_path = tempfile.mktemp(suffix='.txt')
with open(txt_path, 'w', encoding='utf-8') as txt_file:
txt_file.write(formatted_text)
return formatted_text, json_path, txt_path
except Exception as e:
error_message = f"Error processing document: {str(e)}"
return error_message, None, None
with gr.Blocks(title="Quiz Generator") as app:
gr.Markdown("# Quiz Generator")
with gr.Row():
with gr.Column():
course_name = gr.Textbox(
placeholder="Enter the course name",
label="Course Name"
)
section_name = gr.Textbox(
placeholder="Enter the section name",
label="Section Name"
)
lesson_name = gr.Textbox(
placeholder="Enter the lesson name",
label="Lesson Name"
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Document Text",
placeholder="Paste your document text here...",
lines=10
)
api_key = gr.Textbox(
label="API Key",
placeholder="Enter your OpenAI, Claude, or Gemini API key",
type="password"
)
analyze_btn = gr.Button("Analyze Document")
with gr.Column():
output_results = gr.Textbox(
label="Analysis Results",
lines=20
)
json_file_output = gr.File(label="Download JSON")
txt_file_output = gr.File(label="Download TXT")
analyze_btn.click(
fn=analyze_document,
inputs=[input_text, api_key, course_name, section_name, lesson_name],
outputs=[output_results, json_file_output, txt_file_output]
)
if __name__ == "__main__":
app.launch()