File size: 6,679 Bytes
0ce7dfa ac4fda2 0ce7dfa db03031 0ce7dfa 071832d 0ce7dfa 3f00908 0ce7dfa 3f00908 0ce7dfa 73f6d14 0ce7dfa 74211fa 0ce7dfa 74211fa 0ce7dfa 74211fa 3f00908 74211fa 3f00908 74211fa 3f00908 0ce7dfa 74211fa 0ce7dfa db03031 0ce7dfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import gradio as gr
import requests
import json
from moviepy import VideoFileClip
import uuid
import time
ELEVENLABS_API_KEY = os.environ.get("ELEVENLABS_API_KEY", None)
def extract_audio(video_path, output_format="mp3"):
if not video_path:
return None, "No video provided"
output_path = f"extracted_audio_{uuid.uuid4().hex[:8]}.{output_format}"
try:
video = VideoFileClip(video_path)
video.audio.write_audiofile(output_path, logger=None)
video.close()
return output_path, f"Audio extracted successfully"
except Exception as e:
return None, f"Error extracting audio: {str(e)}"
def save_transcription(transcription):
if "error" in transcription:
return None, transcription["error"]
transcript_filename = f"transcription_{uuid.uuid4().hex[:8]}.txt"
try:
with open(transcript_filename, "w", encoding="utf-8") as f:
f.write(transcription.get('text', 'No text found'))
return transcript_filename, "Transcription saved as text file"
except Exception as e:
return None, f"Error saving transcription: {str(e)}"
def process_video_file(video_file, output_format, api_key, model_id):
if video_file is None:
return None, "Please upload a video file", None, "No video provided"
audio_path, message = extract_audio(video_file, output_format)
if audio_path and os.path.exists(audio_path):
transcription = transcribe_audio(audio_path, api_key, model_id)
transcript_file, transcript_message = save_transcription(transcription)
return audio_path, message, transcript_file, transcript_message
else:
return None, message, None, "Audio extraction failed, cannot transcribe"
def process_video_url(video_url, output_format, api_key, model_id):
if not video_url.strip():
return None, "Please enter a video URL", None, "No URL provided"
video_path, error = download_video_from_url(video_url)
if error:
return None, error, None, "Video download failed, cannot transcribe"
audio_path, message = extract_audio(video_path, output_format)
if video_path and os.path.exists(video_path):
try:
os.remove(video_path)
except:
pass
if audio_path and os.path.exists(audio_path):
transcription = transcribe_audio(audio_path, api_key, model_id)
transcript_file, transcript_message = save_transcription(transcription)
return audio_path, message, transcript_file, transcript_message
else:
return None, message, None, "Audio extraction failed, cannot transcribe"
def transcribe_audio(audio_path, api_key, model_id="elevenlabs_1"):
start_time = time.time()
if not api_key:
return {"error": "Please provide an API key"}
url = "https://api.elevenlabs.io/v1/speech-to-text"
headers = {
"xi-api-key": api_key,
"Accept": "application/json"
}
try:
with open(audio_path, "rb") as f:
files = {
"file": (os.path.basename(audio_path), f, "audio/mpeg"),
"model_id": (None, model_id)
}
# Use requests.post with explicit content type handling
response = requests.post(
url,
headers=headers,
files=files
)
# Check for specific HTTP errors
if response.status_code == 401:
return {"error": "Unauthorized. Please check your API key."}
if response.status_code == 422:
return {"error": "Unprocessable Entity. Check file format or API usage."}
response.raise_for_status()
result = response.json()
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError:
return {"error": "Failed to parse API response"}
end_time = time.time()
processing_time = end_time - start_time
file_size = os.path.getsize(audio_path) / (1024 * 1024)
try:
audio_data, sample_rate = sf.read(audio_path)
audio_duration = len(audio_data) / sample_rate
except:
try:
import librosa
audio_duration = librosa.get_duration(filename=audio_path)
except:
audio_duration = 0
# Ensure text is extracted correctly from the new response format
text = result.get('text', '')
return {
"service": "ElevenLabs",
"text": text,
"processing_time": processing_time,
"file_size_mb": file_size,
"audio_duration": audio_duration,
"real_time_factor": processing_time / audio_duration if audio_duration > 0 else None,
"processing_speed": audio_duration / processing_time if audio_duration > 0 else None,
"raw_response": result,
"language_code": result.get('language_code'),
"language_probability": result.get('language_probability')
}
with gr.Blocks(title="Video to Audio to Transcription") as app:
gr.Markdown("# Video => Audio => Transcription")
api_key = gr.Textbox(
placeholder="Enter your ElevenLabs API key",
label="ElevenLabs API Key",
type="password",
value=ELEVENLABS_API_KEY
)
model_id = gr.Dropdown(
choices=["scribe_v1"],
value="scribe_v1",
label="Transcription Model"
)
with gr.Tabs():
with gr.TabItem("Upload Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video")
format_choice_file = gr.Radio(["mp3", "wav"], value="mp3", label="Output Format")
extract_button_file = gr.Button("Extract Audio & Transcribe")
with gr.Column():
audio_output_file = gr.Audio(label="Extracted Audio", type="filepath")
status_output_file = gr.Textbox(label="Audio Extraction Status")
transcript_file_output = gr.File(label="Transcription Text File")
transcript_status_output = gr.Textbox(label="Transcription Status")
extract_button_file.click(
fn=process_video_file,
inputs=[video_input, format_choice_file, api_key, model_id],
outputs=[audio_output_file, status_output_file, transcript_file_output, transcript_status_output]
)
if __name__ == "__main__":
app.launch() |