File size: 5,704 Bytes
174ccbd
369d822
 
 
 
 
 
 
 
 
 
 
 
 
174ccbd
369d822
174ccbd
369d822
 
 
 
 
 
 
 
 
 
 
 
 
41c10f1
 
 
369d822
41c10f1
 
 
 
 
 
369d822
41c10f1
 
369d822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c10f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369d822
 
 
 
 
 
41c10f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369d822
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import numpy as np
import torch
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
from diffusers import (
    FlaxStableDiffusionControlNetPipeline,
    FlaxControlNetModel,
)
from transformers import pipeline

import colorsys

sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cuda" if torch.cuda.is_available() else "cpu"


#sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
#sam.to(device=device)
#predictor = SamPredictor(sam)
#mask_generator = SamAutomaticMaskGenerator(sam)

generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256)
#image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"

# controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
#     "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32
# )

# pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
#     "runwayml/stable-diffusion-v1-5",
#     controlnet=controlnet,
#     revision="flax",
#     dtype=jnp.bfloat16,
# )

# params["controlnet"] = controlnet_params
# p_params = replicate(params)


with gr.Blocks() as demo:
    gr.Markdown("# Ahsans version WildSynth: Synthetic Wildlife Data Generation")
    gr.Markdown(
        """
        ## Work in Progress
        ### About
        We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
        
        For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset.
        We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names 
        as input prompts for detection and more accurate segmentation.
        
        ### How To Use
        
    """
    )
    with gr.Row():
        input_img = gr.Image(label="Input", type="pil")
        mask_img = gr.Image(label="Mask", interactive=False)
        output_img = gr.Image(label="Output", interactive=False)

    with gr.Row():
        prompt_text = gr.Textbox(lines=1, label="Prompt")
        negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")

    with gr.Row():
        submit = gr.Button("Submit")
        clear = gr.Button("Clear")

    def generate_mask(image):
        outputs = generator(image, points_per_batch=256)
        mask_images = []
        for mask in outputs["masks"]:
            color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0)
            h, w = mask.shape[-2:]
            mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
            mask_images.append(mask_image)
        
        return np.stack(mask_images)

    # def infer(
    #     image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
    # ):
    #     try:
    #         rng = jax.random.PRNGKey(int(seed))
    #         num_inference_steps = int(num_inference_steps)
    #         image = Image.fromarray(image, mode="RGB")
    #         num_samples = max(jax.device_count(), int(num_samples))
    #         p_rng = jax.random.split(rng, jax.device_count())

    #         prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
    #         negative_prompt_ids = pipe.prepare_text_inputs(
    #             [negative_prompts] * num_samples
    #         )
    #         processed_image = pipe.prepare_image_inputs([image] * num_samples)

    #         prompt_ids = shard(prompt_ids)
    #         negative_prompt_ids = shard(negative_prompt_ids)
    #         processed_image = shard(processed_image)

    #         output = pipe(
    #             prompt_ids=prompt_ids,
    #             image=processed_image,
    #             params=p_params,
    #             prng_seed=p_rng,
    #             num_inference_steps=num_inference_steps,
    #             neg_prompt_ids=negative_prompt_ids,
    #             jit=True,
    #         ).images

    #         del negative_prompt_ids
    #         del processed_image
    #         del prompt_ids

    #         output = output.reshape((num_samples,) + output.shape[-3:])
    #         final_image = [np.array(x * 255, dtype=np.uint8) for x in output]
    #         print(output.shape)
    #         del output

    #     except Exception as e:
    #         print("Error: " + str(e))
    #         final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
    #     finally:
    #         gc.collect()
    #         return final_image

    # def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
    #     img = None
    #     mask = None
    #     seg = None
    #     out = None
    #     prompt = ""
    #     neg_prompt = ""
    #     bg = False
    #     return img, mask, seg, out, prompt, neg_prompt, bg

    input_img.change(
        generate_mask,
        inputs=[input_img],
        outputs=[mask_img],
    )
    # submit.click(
    #     infer,
    #     inputs=[mask_img, prompt_text, negative_prompt_text],
    #     outputs=[output_img],
    # )
    # clear.click(
    #     _clear,
    #     inputs=[
    #         input_img,
    #         mask_img,
    #         output_img,
    #         prompt_text,
    #         negative_prompt_text,
    #     ],
    #     outputs=[
    #         input_img,
    #         mask_img,
    #         output_img,
    #         prompt_text,
    #         negative_prompt_text,
    #     ],
    # )

if __name__ == "__main__":
    demo.queue()
    demo.launch()