Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime as ort
|
5 |
+
|
6 |
+
# Audio padding function
|
7 |
+
def pad(x, max_len=64600):
|
8 |
+
"""
|
9 |
+
Pad or trim an audio segment to a fixed length by repeating or slicing.
|
10 |
+
"""
|
11 |
+
x_len = x.shape[0]
|
12 |
+
if x_len >= max_len:
|
13 |
+
return x[:max_len] # Trim if longer
|
14 |
+
# Repeat to fill max_len
|
15 |
+
num_repeats = (max_len // x_len) + 1
|
16 |
+
padded_x = np.tile(x, (1, num_repeats))[:, :max_len][0]
|
17 |
+
return padded_x
|
18 |
+
|
19 |
+
# Preprocess audio for a single segment
|
20 |
+
def preprocess_audio_segment(segment, cut=64600):
|
21 |
+
"""
|
22 |
+
Preprocess a single audio segment: pad or trim as required.
|
23 |
+
"""
|
24 |
+
segment = pad(segment, max_len=cut)
|
25 |
+
return np.expand_dims(np.array(segment, dtype=np.float32), axis=0) # Add batch dimension
|
26 |
+
|
27 |
+
# Sliding window prediction function
|
28 |
+
def predict_with_sliding_window(audio_path, onnx_model_url, window_size=64600, step_size=64600, sample_rate=16000):
|
29 |
+
"""
|
30 |
+
Use a sliding window to predict if the audio is real or fake over the entire audio.
|
31 |
+
"""
|
32 |
+
# Load ONNX runtime session
|
33 |
+
ort_session = ort.InferenceSession(onnx_model_url)
|
34 |
+
|
35 |
+
# Load audio file
|
36 |
+
waveform, _ = librosa.load(audio_path, sr=sample_rate)
|
37 |
+
total_segments = []
|
38 |
+
total_probabilities = []
|
39 |
+
|
40 |
+
# Sliding window processing
|
41 |
+
for start in range(0, len(waveform), step_size):
|
42 |
+
end = start + window_size
|
43 |
+
segment = waveform[start:end]
|
44 |
+
|
45 |
+
# Preprocess the segment
|
46 |
+
audio_tensor = preprocess_audio_segment(segment)
|
47 |
+
|
48 |
+
# Perform inference
|
49 |
+
inputs = {ort_session.get_inputs()[0].name: audio_tensor}
|
50 |
+
outputs = ort_session.run(None, inputs)
|
51 |
+
probabilities = np.exp(outputs[0]) # Softmax probabilities
|
52 |
+
prediction = np.argmax(probabilities)
|
53 |
+
|
54 |
+
# Store the results
|
55 |
+
predicted_class = "Real" if prediction == 1 else "Fake"
|
56 |
+
total_segments.append(predicted_class)
|
57 |
+
total_probabilities.append(probabilities[0][prediction])
|
58 |
+
|
59 |
+
# Final aggregation
|
60 |
+
majority_class = max(set(total_segments), key=total_segments.count) # Majority voting
|
61 |
+
avg_probability = np.mean(total_probabilities) * 100 # Average probability in percentage
|
62 |
+
|
63 |
+
return majority_class, avg_probability
|
64 |
+
|
65 |
+
# Streamlit app
|
66 |
+
st.title("Audio Spoof Detection with ONNX Model")
|
67 |
+
st.write("Upload an audio file to detect if it is Real or Fake.")
|
68 |
+
|
69 |
+
# File uploader
|
70 |
+
uploaded_file = st.file_uploader("Upload your audio file (WAV or MP3)", type=["wav", "mp3"])
|
71 |
+
|
72 |
+
if uploaded_file is not None:
|
73 |
+
# Path to your ONNX model
|
74 |
+
onnx_model_url = "https://huggingface.co/Mrkomiljon/DeepVoiceGuard/blob/main/RawNet_model.onnx"
|
75 |
+
|
76 |
+
# Save uploaded file temporarily
|
77 |
+
with open("temp_audio_file.wav", "wb") as f:
|
78 |
+
f.write(uploaded_file.read())
|
79 |
+
|
80 |
+
# Perform prediction
|
81 |
+
with st.spinner("Processing..."):
|
82 |
+
result, avg_probability = predict_with_sliding_window("temp_audio_file.wav", onnx_model_url)
|
83 |
+
|
84 |
+
# Display results
|
85 |
+
st.success(f"Prediction: {result}")
|
86 |
+
st.info(f"Confidence: {avg_probability:.2f}%")
|
87 |
+
|
88 |
+
# Clean up temporary file
|
89 |
+
import os
|
90 |
+
os.remove("temp_audio_file.wav")
|