Mrkomiljon commited on
Commit
aa9e812
·
verified ·
1 Parent(s): bd48055

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -7
app.py CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
2
  import librosa
3
  import numpy as np
4
  import onnxruntime as ort
 
 
5
 
6
  # Audio padding function
7
  def pad(x, max_len=64600):
@@ -24,13 +26,29 @@ def preprocess_audio_segment(segment, cut=64600):
24
  segment = pad(segment, max_len=cut)
25
  return np.expand_dims(np.array(segment, dtype=np.float32), axis=0) # Add batch dimension
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  # Sliding window prediction function
28
- def predict_with_sliding_window(audio_path, onnx_model_url, window_size=64600, step_size=64600, sample_rate=16000):
29
  """
30
  Use a sliding window to predict if the audio is real or fake over the entire audio.
31
  """
32
  # Load ONNX runtime session
33
- ort_session = ort.InferenceSession(onnx_model_url)
34
 
35
  # Load audio file
36
  waveform, _ = librosa.load(audio_path, sr=sample_rate)
@@ -69,22 +87,25 @@ st.write("Upload an audio file to detect if it is Real or Fake.")
69
  # File uploader
70
  uploaded_file = st.file_uploader("Upload your audio file (WAV or MP3)", type=["wav", "mp3"])
71
 
72
- if uploaded_file is not None:
73
- # Path to your ONNX model
74
- onnx_model_url = "https://huggingface.co/Mrkomiljon/DeepVoiceGuard/resolve/main/RawNet_model.onnx"
75
 
 
 
 
 
76
  # Save uploaded file temporarily
77
  with open("temp_audio_file.wav", "wb") as f:
78
  f.write(uploaded_file.read())
79
 
80
  # Perform prediction
81
  with st.spinner("Processing..."):
82
- result, avg_probability = predict_with_sliding_window("temp_audio_file.wav", onnx_model_url)
83
 
84
  # Display results
85
  st.success(f"Prediction: {result}")
86
  st.info(f"Confidence: {avg_probability:.2f}%")
87
 
88
  # Clean up temporary file
89
- import os
90
  os.remove("temp_audio_file.wav")
 
 
2
  import librosa
3
  import numpy as np
4
  import onnxruntime as ort
5
+ import os
6
+ import requests
7
 
8
  # Audio padding function
9
  def pad(x, max_len=64600):
 
26
  segment = pad(segment, max_len=cut)
27
  return np.expand_dims(np.array(segment, dtype=np.float32), axis=0) # Add batch dimension
28
 
29
+ # Download ONNX model from Hugging Face
30
+ def download_model(url, local_path="RawNet_model.onnx"):
31
+ """
32
+ Download the ONNX model from a URL if it doesn't already exist locally.
33
+ """
34
+ if not os.path.exists(local_path):
35
+ with st.spinner("Downloading ONNX model..."):
36
+ response = requests.get(url)
37
+ if response.status_code == 200:
38
+ with open(local_path, "wb") as f:
39
+ f.write(response.content)
40
+ st.success("Model downloaded successfully!")
41
+ else:
42
+ raise Exception("Failed to download ONNX model")
43
+ return local_path
44
+
45
  # Sliding window prediction function
46
+ def predict_with_sliding_window(audio_path, onnx_model_path, window_size=64600, step_size=64600, sample_rate=16000):
47
  """
48
  Use a sliding window to predict if the audio is real or fake over the entire audio.
49
  """
50
  # Load ONNX runtime session
51
+ ort_session = ort.InferenceSession(onnx_model_path)
52
 
53
  # Load audio file
54
  waveform, _ = librosa.load(audio_path, sr=sample_rate)
 
87
  # File uploader
88
  uploaded_file = st.file_uploader("Upload your audio file (WAV or MP3)", type=["wav", "mp3"])
89
 
90
+ # ONNX model URL (replace with your actual Hugging Face model URL)
91
+ onnx_model_url = "https://huggingface.co/Mrkomiljon/DeepVoiceGuard/resolve/main/RawNet_model.onnx"
 
92
 
93
+ # Ensure ONNX model is downloaded locally
94
+ onnx_model_path = download_model(onnx_model_url)
95
+
96
+ if uploaded_file is not None:
97
  # Save uploaded file temporarily
98
  with open("temp_audio_file.wav", "wb") as f:
99
  f.write(uploaded_file.read())
100
 
101
  # Perform prediction
102
  with st.spinner("Processing..."):
103
+ result, avg_probability = predict_with_sliding_window("temp_audio_file.wav", onnx_model_path)
104
 
105
  # Display results
106
  st.success(f"Prediction: {result}")
107
  st.info(f"Confidence: {avg_probability:.2f}%")
108
 
109
  # Clean up temporary file
 
110
  os.remove("temp_audio_file.wav")
111
+