Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,13 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
import traceback
|
6 |
import gradio as gr
|
7 |
-
from transformers import DetrImageProcessor, DetrForObjectDetection
|
8 |
-
from diffusers import StableDiffusionPipeline
|
9 |
from huggingface_hub import login
|
10 |
import torchvision.transforms as T
|
11 |
-
import torchvision.models as models
|
12 |
-
from dotenv import load_dotenv
|
13 |
|
14 |
# Load environment variables from .env file
|
|
|
15 |
load_dotenv()
|
16 |
|
17 |
# Retrieve Hugging Face token from environment variable
|
@@ -19,12 +18,12 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
19 |
if HF_TOKEN is None:
|
20 |
raise ValueError("Hugging Face token not found in environment variables.")
|
21 |
|
22 |
-
|
23 |
def load_detr_model():
|
24 |
try:
|
25 |
-
|
26 |
-
|
27 |
-
return
|
28 |
except Exception as e:
|
29 |
return None, None, f"Error loading DETR model: {str(e)}"
|
30 |
|
@@ -43,72 +42,12 @@ def detect_objects(image):
|
|
43 |
else:
|
44 |
return None, "DETR models not loaded. Skipping object detection."
|
45 |
|
46 |
-
|
47 |
-
def style_transfer(content_image, style_image):
|
48 |
-
try:
|
49 |
-
transform = T.Compose([
|
50 |
-
T.Resize((512, 512)),
|
51 |
-
T.ToTensor(),
|
52 |
-
T.Lambda(lambda x: x.mul(255))
|
53 |
-
])
|
54 |
-
|
55 |
-
content = transform(content_image).unsqueeze(0).requires_grad_(False)
|
56 |
-
style = transform(style_image).unsqueeze(0).requires_grad_(False)
|
57 |
-
|
58 |
-
vgg = models.vgg19(pretrained=True).features.eval()
|
59 |
-
for param in vgg.parameters():
|
60 |
-
param.requires_grad_(False)
|
61 |
-
|
62 |
-
generated = content.clone().requires_grad_(True)
|
63 |
-
optimizer = torch.optim.Adam([generated], lr=0.003)
|
64 |
-
|
65 |
-
for i in range(300):
|
66 |
-
generated_features = vgg(generated)
|
67 |
-
content_features = vgg(content)
|
68 |
-
style_features = vgg(style)
|
69 |
-
|
70 |
-
content_loss = torch.mean((generated_features - content_features)**2)
|
71 |
-
style_loss = torch.mean((generated_features - style_features)**2)
|
72 |
-
|
73 |
-
total_loss = content_loss + style_loss
|
74 |
-
optimizer.zero_grad()
|
75 |
-
total_loss.backward()
|
76 |
-
optimizer.step()
|
77 |
-
|
78 |
-
generated_image = generated.squeeze().clamp(0, 255).cpu().detach().numpy().transpose(1, 2, 0)
|
79 |
-
return Image.fromarray(np.uint8(generated_image)), None
|
80 |
-
except Exception as e:
|
81 |
-
return content_image, f"Error in style_transfer: {str(e)}"
|
82 |
-
|
83 |
-
## 2.3 Layout Generation with LayoutLM
|
84 |
-
def load_layoutlm_model():
|
85 |
-
try:
|
86 |
-
layoutlm_tokenizer = LayoutLMTokenizer.from_pretrained('microsoft/layoutlm-base-uncased')
|
87 |
-
layoutlm_model = LayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased')
|
88 |
-
return layoutlm_tokenizer, layoutlm_model, None
|
89 |
-
except Exception as e:
|
90 |
-
return None, None, f"Error loading LayoutLM model: {str(e)}"
|
91 |
-
|
92 |
-
layoutlm_tokenizer, layoutlm_model, layoutlm_error = load_layoutlm_model()
|
93 |
-
|
94 |
-
def generate_layout(text):
|
95 |
-
if layoutlm_tokenizer is not None and layoutlm_model is not None:
|
96 |
-
try:
|
97 |
-
inputs = layoutlm_tokenizer(text, return_tensors="pt")
|
98 |
-
outputs = layoutlm_model(**inputs)
|
99 |
-
layout = outputs.logits.argmax(dim=-1)
|
100 |
-
return layout, None
|
101 |
-
except Exception as e:
|
102 |
-
return None, f"Error in generate_layout: {str(e)}"
|
103 |
-
else:
|
104 |
-
return None, "LayoutLM models not loaded. Skipping layout generation."
|
105 |
-
|
106 |
-
## 2.4 Image Generation with Stable Diffusion
|
107 |
def load_stable_diffusion_model():
|
108 |
try:
|
109 |
login(token=HF_TOKEN)
|
110 |
-
|
111 |
-
return
|
112 |
except Exception as e:
|
113 |
return None, f"Error loading Stable Diffusion model: {str(e)}"
|
114 |
|
@@ -124,69 +63,32 @@ def generate_image(prompt):
|
|
124 |
else:
|
125 |
return None, "Stable Diffusion model not loaded. Skipping image generation."
|
126 |
|
127 |
-
|
128 |
-
def
|
129 |
-
try:
|
130 |
-
upscale_pipeline = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler").to("cuda")
|
131 |
-
return upscale_pipeline, None
|
132 |
-
except Exception as e:
|
133 |
-
return None, f"Error loading Upscale Pipeline: {str(e)}"
|
134 |
-
|
135 |
-
upscale_pipeline, upscale_error = load_upscale_pipeline()
|
136 |
-
|
137 |
-
def super_resolve(image):
|
138 |
-
if upscale_pipeline is not None:
|
139 |
-
try:
|
140 |
-
if not isinstance(image, Image.Image):
|
141 |
-
raise ValueError("Input must be a PIL image.")
|
142 |
-
upscaled_image = upscale_pipeline(image=image).images[0]
|
143 |
-
return upscaled_image, None
|
144 |
-
except Exception as e:
|
145 |
-
return None, f"Error in super_resolve: {str(e)}"
|
146 |
-
else:
|
147 |
-
return image, "Upscale Pipeline not loaded. Skipping super-resolution."
|
148 |
-
|
149 |
-
# Step 3: Gradio Interface and Integration
|
150 |
-
def process_image(image, style_image, text_prompt):
|
151 |
try:
|
152 |
# Detect objects
|
153 |
object_results, detect_error = detect_objects(image)
|
154 |
if detect_error:
|
155 |
return None, detect_error
|
156 |
|
157 |
-
#
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
# Generate layout
|
163 |
-
layout_results, layout_error = generate_layout(text_prompt)
|
164 |
-
if layout_error:
|
165 |
-
return None, layout_error
|
166 |
-
|
167 |
-
# Generate image based on layout
|
168 |
-
generated_image, gen_image_error = generate_image("modern interior design based on layout")
|
169 |
if gen_image_error:
|
170 |
return None, gen_image_error
|
171 |
|
172 |
-
|
173 |
-
final_image, upscale_error = super_resolve(generated_image)
|
174 |
-
if upscale_error:
|
175 |
-
return None, upscale_error
|
176 |
-
|
177 |
-
return final_image, None
|
178 |
except Exception as e:
|
179 |
return None, f"Error in process_image: {str(e)}"
|
180 |
|
181 |
iface = gr.Interface(
|
182 |
fn=process_image,
|
183 |
inputs=[
|
184 |
-
gr.Image(type="pil", label="Upload Room Image")
|
185 |
-
gr.Image(type="pil", label="Upload Style Image"),
|
186 |
-
gr.Textbox(label="Enter Design Prompt")
|
187 |
],
|
188 |
outputs=[
|
189 |
-
gr.Image(type="pil", label="
|
190 |
gr.Textbox(label="Error Message")
|
191 |
]
|
192 |
)
|
@@ -195,4 +97,4 @@ try:
|
|
195 |
iface.launch()
|
196 |
except Exception as e:
|
197 |
print(f"Error occurred while launching the interface: {str(e)}")
|
198 |
-
traceback.print_exc()
|
|
|
4 |
import numpy as np
|
5 |
import traceback
|
6 |
import gradio as gr
|
7 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
8 |
+
from diffusers import StableDiffusionPipeline
|
9 |
from huggingface_hub import login
|
10 |
import torchvision.transforms as T
|
|
|
|
|
11 |
|
12 |
# Load environment variables from .env file
|
13 |
+
from dotenv import load_dotenv
|
14 |
load_dotenv()
|
15 |
|
16 |
# Retrieve Hugging Face token from environment variable
|
|
|
18 |
if HF_TOKEN is None:
|
19 |
raise ValueError("Hugging Face token not found in environment variables.")
|
20 |
|
21 |
+
# Load DETR model for object detection
|
22 |
def load_detr_model():
|
23 |
try:
|
24 |
+
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50')
|
25 |
+
processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50')
|
26 |
+
return model, processor, None
|
27 |
except Exception as e:
|
28 |
return None, None, f"Error loading DETR model: {str(e)}"
|
29 |
|
|
|
42 |
else:
|
43 |
return None, "DETR models not loaded. Skipping object detection."
|
44 |
|
45 |
+
# Load Stable Diffusion model for image generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def load_stable_diffusion_model():
|
47 |
try:
|
48 |
login(token=HF_TOKEN)
|
49 |
+
pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda")
|
50 |
+
return pipeline, None
|
51 |
except Exception as e:
|
52 |
return None, f"Error loading Stable Diffusion model: {str(e)}"
|
53 |
|
|
|
63 |
else:
|
64 |
return None, "Stable Diffusion model not loaded. Skipping image generation."
|
65 |
|
66 |
+
# Gradio Interface
|
67 |
+
def process_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
# Detect objects
|
70 |
object_results, detect_error = detect_objects(image)
|
71 |
if detect_error:
|
72 |
return None, detect_error
|
73 |
|
74 |
+
# Generate a modern redesign of the image based on the detected objects
|
75 |
+
# For simplicity, we'll use a fixed prompt for image generation
|
76 |
+
prompt = "modern redesign of an interior room"
|
77 |
+
generated_image, gen_image_error = generate_image(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if gen_image_error:
|
79 |
return None, gen_image_error
|
80 |
|
81 |
+
return generated_image, None
|
|
|
|
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
return None, f"Error in process_image: {str(e)}"
|
84 |
|
85 |
iface = gr.Interface(
|
86 |
fn=process_image,
|
87 |
inputs=[
|
88 |
+
gr.Image(type="pil", label="Upload Room Image")
|
|
|
|
|
89 |
],
|
90 |
outputs=[
|
91 |
+
gr.Image(type="pil", label="Redesigned Image"),
|
92 |
gr.Textbox(label="Error Message")
|
93 |
]
|
94 |
)
|
|
|
97 |
iface.launch()
|
98 |
except Exception as e:
|
99 |
print(f"Error occurred while launching the interface: {str(e)}")
|
100 |
+
traceback.print_exc()
|