Spaces:
Runtime error
Runtime error
File size: 4,523 Bytes
3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 3dab771 7be4744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import os
os.system("pip install pyyaml==5.1")
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
os.system(
"pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html"
)
# install detectron2 that matches pytorch 1.8
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
os.system(
"pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html"
)
## install PyTesseract
os.system("pip install -q pytesseract")
import gradio as gr
import numpy as np
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
model = LayoutLMv3ForTokenClassification.from_pretrained(
"nielsr/layoutlmv3-finetuned-funsd"
)
# load image example
dataset = load_dataset("nielsr/funsd", split="test")
image = Image.open(dataset[0]["image_path"]).convert("RGB")
image = Image.open("./invoice.png")
image.save("document.png")
labels = dataset.features["ner_tags"].feature.names
id2label = {v: k for v, k in enumerate(labels)}
label2color = {
"question": "blue",
"answer": "green",
"header": "orange",
"other": "violet",
}
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
label = label[2:]
if not label:
return "other"
return label
def process_image(image):
width, height = image.size
# encode
encoding = processor(
image, truncation=True, return_offsets_mapping=True, return_tensors="pt"
)
offset_mapping = encoding.pop("offset_mapping")
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
true_predictions = [
id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]
]
true_boxes = [
unnormalize_box(box, width, height)
for idx, box in enumerate(token_boxes)
if not is_subword[idx]
]
# draw predictions over the image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction).lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text(
(box[0] + 10, box[1] - 10),
text=predicted_label,
fill=label2color[predicted_label],
font=font,
)
return image
title = "Interactive demo: LayoutLMv3"
description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
examples = [["document.png"]]
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
# css = ".output_image, .input_image {height: 600px !important}"
css = ".image-preview {height: auto !important;}"
iface = gr.Interface(
fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
examples=examples,
css=css,
enable_queue=True,
)
iface.launch(debug=True)
|